

 1

Web Services for Management
(WS-Management June 2005)

Authors

Akhil Arora, Sun Microsystems, Inc.
Josh Cohen, Microsoft Corporation
Jim Davis, WBEM Solutions, Inc.
Mike Dutch, Symantec Corporation
Eugene Golovinsky, BMC Software, Inc.
Yasuhiro Hagiwara, NEC Corporation
Jackson He, Intel Corporation
David Hines, Intel Corporation
Reiji Inohara, NEC Corporation
Christane Kämpfe, Fujitsu-Siemens Computers
Raymond McCollum, Microsoft Corporation (Editor)
Milan Milenkovic, Intel Corporation
Paul Montgomery, Advanced Micro Devices, Inc.
Alexander Nosov, Microsoft Corporation
Abhay Padlia, Novell, Inc.
Roger Reich, Symantec Corporation
Larry Russon, Novell, Inc
Jeffrey Schlimmer, Microsoft Corporation
Enoch Suen, Dell Inc.
Vijay Tewari, Intel Corporation
Kirk Wilson, Computer Associates

Copyright Notice

(c) 2004, 2005 Advanced Micro Devices, Inc., BMC Software, Inc, Computer Associates,
Dell, Inc., Fujitsu-Siemens Computers, Intel Corporation, Microsoft Corporation, NEC
Corporation, Novell Inc., Sun Microsystems, Inc., Symantec Corporation, and WBEM
Solutions, Inc. All rights reserved.

Permission to copy and display WS-Management, which includes its associated WSDL and
Schema files and any other associated metadata (the "Specification"), in any medium
without fee or royalty is hereby granted, provided that you include the following on ALL
copies of the Specification that you make:

1. A link or URL to the Specification at one of the Co-Developers’ websites.

2. The copyright notice as shown in the Specification.

Microsoft, Intel, AMD, BMC, Computer Associates, Dell, Fujitsu-Siemens, NEC, Novell, Sun,

 2

Symantec, and WBEM Solutions (collectively, the "Co-Developers") each agree upon request
to grant you a license, provided you agree to be bound by such license, under royalty-free
and otherwise reasonable, non-discriminatory terms and conditions to their respective
patent claims that would necessarily be infringed by an implementation of the Specification
and solely to the extent necessary to comply with the Specification.

THE SPECIFICATION IS PROVIDED "AS IS," AND THE CO-DEVELOPERS MAKE NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE SPECIFICATION ARE
SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS WILL
NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER
RIGHTS.

THE CO-DEVELOPERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR RELATING TO ANY USE
OR DISTRIBUTION OF THE SPECIFICATIONS.

The name and trademarks of the Co-Developers may NOT be used in any manner, including
advertising or publicity pertaining to the Specifications or their contents without specific,
written prior permission. Title to copyright in the Specifications will at all times remain with
the Co-Developers.

No other rights are granted by implication, estoppel or otherwise.

Abstract

This specification describes a general SOAP-based protocol for managing systems such as
PCs, servers, devices, Web services and other applications, and other manageable entities.

Status

The first edition of this specification was published in October 2004, which was a pre-release
version for public comment. The February 2005 edition was the basis of successful
interoperation tests with multiple vendors, and this June 2005 edition is based on the
corrections and feedback from those tests and is a stable working version.

1.0 Introduction 5
1.1 Requirements 6
1.2 Notations and Terminology 6
1.3 Notational Conventions 6
1.4 Conformance 7
1.5 XML Namespaces 7
1.6 Terminology 8

2.0 Addressing 9
2.1 Endpoint References 9
2.2 Other WS-Addressing Headers 12
2.3 mustUnderstand Usage 12
2.4 wsa:To and wsman:ResourceURI 13
2.5 ReplyTo 16
2.6 FaultTo 18

 3

2.7 MessageID and RelatesTo 19
2.8 Selectors 20
2.9 Action 23
2.10 wsa:From 26

3.0 WS-Management Control Headers 27
3.1 Operation Timeout 27
3.2 Maximum Envelope Size 28
3.3 Locale 29
3.4 Options 30

4.0 Resource Access 33
4.1 Introduction 33
4.2 WS-Transfer 33
4.3 Addressing Uniformity 35
4.4 WS-Transfer:Get 36
4.5 WS-Transfer:Delete 36
4.6 WS-Transfer:Create 37
4.7 WS-Transfer:Put 39
4.8 WS-Management:Rename 41
4.9 Fragment-Level WS-Transfer 45
4.10 Fragment-Level WS-Transfer:Get 48
4.11 Fragment-Level WS-Transfer:Put 49
4.12 Fragment-Level WS-Transfer:Create 52
4.13 Fragment-Level WS-Transfer:Delete 55

5.0 WS-Enumeration 55
5.1 Introduction 55
5.2 WS-Enumeration:Enumerate 56
5.3 Filter Intepretation 58
5.4 WS-Enumeration:Pull 60
5.5 WS-Enumeration:Release 63
5.6 Ad-Hoc Queries and Fragment-Level Enumerations 63
5.7 Enumeration of EPRs 64

6.0 Custom Actions (Methods) 66
6.1 General 66

7.0 Eventing 68
7.1 General 68
7.2 Subscribe 68

7.2.1 General 68
7.2.2 Filtering 69
7.2.3 Connection Retries 71
7.2.4 wse:SubscribeResponse 72
7.2.5 Heartbeats 73
7.2.6 Bookmarks 74
7.2.7 Delivery Modes 77
7.2.8 Event Action URI 78
7.2.9 Delivery Sequencing and Acknowledgement 78
7.2.10 Push Mode 79
7.2.11 PushWithAck Mode 80
7.2.12 Batched Delivery Mode 80
7.2.13 Pull Delivery Mode 84

 4

7.3 GetStatus 86
7.4 Unsubscribe 86
7.5 Renew 87
7.6 SubscriptionEnd 87
7.7 Acknowledgement of Delivery 88
7.8 Refusal of Delivery 89
7.9 Dropped Events 90

8.0 Metadata and Discovery 91
9.0 Security 92

9.1 Introduction 92
9.2 Security Profiles 92
9.3 Interoperation Conformance 93
9.4 wsman:secprofile/http/basic 93
9.5 wsman:secprofile/http/digest 94
9.6 wsman:secprofile/https/basic 95
9.7 wsman:secprofile/https/digest 95
9.8 wsman:secprofile/https/mutual 96
9.9 wsman:secprofile/https/mutual/basic 96
9.10 wsman:secprofile/https/mutual/digest 97
9.11 wsman:secprofile/https/spnego-kerberos 97
9.12 wsman:secprofile/https/mutual/spnego-kerberos 98
9.13 wsman:secprofile/http/spnego-kerberos 99
9.14 Subscriptions 99
9.15 Including Credentials with a Subscription 100
9.16 Correlation of Events with Subscription 103
9.17 Transport-Level Authentication Failure 104

10.0 Transports and Message Encoding 104
10.1 Introduction 104
10.2 HTTP(S) Encoding 105
10.3 SOAP 106
10.4 Lack of Response 107
10.5 Replay Of Messages 108
10.6 Encoding Limits 108
10.7 Binary Attachments 109
10.8 Case-Sensitivity 109
10.9 The wsman: URI scheme 110

11.0 Faults 110
11.1 Introduction 110
11.2 Fault Encoding 110
11.3 NotUnderstood Faults 112
11.4 Degenerate Faults 113
11.5 Fault Extensibility 113
11.6 Master Fault Table 114

11.6.1 wsman:AccessDenied 114
11.6.2 wsman:NoAck 115
11.6.3 wsa:ActionNotSupported 115
11.6.4 wsman:Concurrency 116
11.6.5 wsman:AlreadyExists 117
11.6.6 wsen:CannotProcessFilter 117

 5

11.6.7 wse:DeliveryModeRequestedUnavailable 118
11.6.8 wsman:DeliveryRefused 119
11.6.9 wsa:DestinationUnreachable 119
11.6.10 wsman:EncodingLimit 120
11.6.11 wsa:EndpointUnavailable 122
11.6.12 wse:EventSourceUnableToProcess 122
11.6.13 wsen:FilterDialectRequestedUnavailable 123
11.6.14 wse:FilteringNotSupported 124
11.6.15 wsen:FilteringNotSupported 124
11.6.16 wse:FilteringRequestedUnavailable 125
11.6.17 wsman:InternalError 126
11.6.18 wsman:InvalidBookmark 127
11.6.19 wsen:InvalidEnumerationContext 127
11.6.20 wse:InvalidExpirationTime 128
11.6.21 wsen:InvalidExpirationTime 129
11.6.22 wse:InvalidMessage 129
11.6.23 wsa:InvalidMessageInformationHeader 130
11.6.24 wsman:InvalidOptions 130
11.6.25 wsman:InvalidParameter 131
11.6.26 wxf:InvalidRepresentation 132
11.6.27 wsman:InvalidSelectors 133
11.6.28 wsa:MessageInformationHeaderRequired 134
11.6.29 wsman:QuotaLimit 134
11.6.30 wsman:RenameFailure 135
11.6.31 wsman:SchemaValidationError 135
11.6.32 wsen:TimedOut 136
11.6.33 wsman:TimedOut 136
11.6.34 wse:UnableToRenew 137
11.6.35 wse:UnsupportedExpirationType 137
11.6.36 wsen:UnsupportedExpirationType 138
11.6.37 wsman:UnsupportedFeature 138

12.0 XPath Support 140
12.1 Level 1 140
12.2 Level 2 142

13.0 WS-Management XSD 145
14.0 Acknowledgements 153
15.0 References 153

1.0 Introduction
The Web services architecture is based on a suite of specifications that define rich functions
and that may be composed to meet varied service requirements.

A crucial application for these services is in the area of systems management. To promote
interoperability between management applications and managed resources, this

 6

specification identifies a core set of Web service specifications and usage requirements to
expose a common set of operations that are central to all systems management. This
comprises the abilities to

• DISCOVER the presence of management resources and navigate between them.

• GET, PUT, CREATE, RENAME, and DELETE individual management resources, such as
settings and dynamic values.

• ENUMERATE the contents of containers and collections, such as large tables and logs.

• SUBSCRIBE to events emitted by managed resources.

• EXECUTE specific management methods with strongly typed input and output
parameters.

In each of these areas of scope, this specification defines minimal implementation
requirements for conformant Web service implementations. An implementation is free to
extend beyond this set of operations, and may also choose not to support one or more
areas of functionality listed above if that functionality is not appropriate to the target device
or system.

1.1 Requirements
This specification intends to meet the following requirements:

• Constrain Web services protocols and formats so Web services can be implemented
in management services with a small footprint, in both hardware and software.

• Define minimum requirements for compliance without constraining richer
implementations.

• Ensure composability with other Web services specifications

• Minimize additional mechanism beyond the current Web service architecture.

1.2 Notations and Terminology
This section specifies the notations, namespaces, and terminology used in this specification.

1.3 Notational Conventions
The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in RFC 2119 [RFC 2119].

This specification uses the following syntax to define normative outlines for messages:

• The syntax appears as an XML instance, but values in italics indicate data types instead
of values.

• Characters are appended to elements and attributes to indicate cardinality:

• "?" (0 or 1)

• "*" (0 or more)

• "+" (1 or more)

• The character "|" is used to indicate a choice between alternatives.

 7

• The characters "[" and "]" are used to indicate that contained items are to be treated as
a group with respect to cardinality or choice.

• An ellipsis (i.e. "...") indicates a point of extensibility that allows other child or attribute
content. Additional children and/or attributes MAY be added at the indicated extension
points but MUST NOT contradict the semantics of the parent and/or owner, respectively.
If a receiver does not recognize an extension, the receiver SHOULD NOT process the
message and MAY fault.

• XML namespace prefixes (see Table 1) are used to indicate the namespace of the
element being defined.

Throughout the document, whitespace within XML element values is used for readability.
In practice, a service should accept and strip leading and trailing whitespace whitespace
within element values as if whitespace had not been used. (See conformance rule R10.3-
9).

1.4 Conformance
An implementation is not conformant with this specification if it fails to satisfy one or more
of the MUST or REQUIRED level requirements defined in the conformance rules for each
section, as indicated by the following format:

Rnnnn: Rule text

General conformance rules:

R1.4-1: To be conformant, the service MUST comply with all the rules defined in this
specification. Items marked with MUST are required, and items marked
with SHOULD are highly advisable to maximize interoperation. Items
marked with MAY indicate the preferred implementation in terms of
expected features, but interoperation should not be affected if they are
ignored.

R1.4-2: A SOAP node MUST NOT use the XMLnamespace identifier for this
specification (see 1.5) unless it complies with the conformance rules in this
specification.

This specification does not mandate that all messages and operations must be supported. It
only requires that if a given message is supported, it must obey the conformance rules for
that message or operation. It is important that services do not use the XML namespace
identifier for WS-Management in SOAP operations in a manner inconsistent with the rules
defined in this specification.

1.5 XML Namespaces
R1.5-1: The XML namespace URI that MUST be used by conformant services of this

specification is:

 8

(1) http://schemas.xmlsoap.org/ws/2005/06/management

Table 1 lists XML namespaces that are used in this specification. The choice of any
namespace prefix is arbitrary and not semantically significant.

Table 1: Prefixes and XML namespaces used in this specification.

Prefix XML Namespace Specification(s)

wsman http://schemas.xmlsoap.org/ws/2005/06/managem
ent

This specification

s http://www.w3.org/2003/05/soap-envelope SOAP 1.2 [SOAP 1.2]

xs http://www.w3.org/2001/XMLSchema XML Schema [Part 1, 2]

wsdl http://schemas.xmlsoap.org/wsdl WSDL/1.1 [WSDL 1.1]

wsa http://schemas.xmlsoap.org/ws/2004/08/addressin
g

WS-Addressing [WS-
Addressing]

wse http://schemas.xmlsoap.org/ws/2004/08/eventing WS-Eventing [WS-Eventing]

wsen http://schemas.xmlsoap.org/ws/2004/09/enumerati
on

WS-Enumeration [WS-
Enumeration]

wxf http://schemas.xmlsoap.org/ws/2004/09/transfer WS-Transfer [WS-Transfer]

wsp http://schemas.xmlsoap.org/ws/2004/09/policy WS-Policy [WS-Policy]

wst http://schemas.xmlsoap.org/ws/2005/02/trust WS-Trust

wsse http://docs.oasis-open.org/wss/2004/01/oasis-
200401-wss-wssecurity-secext-1.0.xsd

WS-Security

wsu http://docs.oasis-open.org/wss/2004/01/oasis-
200401-wss-wssecurity-utility-1.0.xsd

WS-Security Utility

1.6 Terminology
Client

The client application using the Web services defined in this document to access the
management service.

Service
An application that provides management services to clients by exposing the web
services defined in this document. A service typically is equivalent to the network
"listener" and is associated with a physical transport address and is essentially a type
of manageability access point.

Management resource
An endpoint which represents a distinct type of management operation or value. A
service exposes one or more resources and some resources can have more than one

 9

instance. In this sense, a management resource is similar to a "class" or a database
table, and an instance is similar to an instance of the class or a row in the table.

Selector
A resource-relative name and value pair which acts as an instance-level discriminant.
This is essentially a filter or "key" which identifies the desired instance of the
resource.

The relationship of services to management resources is as follows:

• A service consists of one or more management resources.

• A resource may contain one or more instances.

• If more than one instance for a management resource exists, they are isolated or
identified through the Selector mechanism.

2.0 Addressing

2.1 Endpoint References
WS-Management uses WS-Addressing endpoint references (also known as EPRs) as the
addressing model for individual management resources. To access a resource, the endpoint
reference is used in the SOAP header, with the usage discussed in the following sections.
This management endpoint reference uses a representation which is a tuple of the following
SOAP headers:

(1) wsa:To (required) : The transport address of the service

(2) wsman:ResourceURI (required) The URI of the managed resource being accessed.

(3) wsman:SelectorSet (optional) : Used to reference or select the specific instance of
a resource, if there is more than one instance

The WS-Management endpoint reference is defined in SOAP as follows:

(1) <wsa:EndpointReference>
(2) <wsa:Address>

(3) Network address
(4) </wsa:Address>
(5) <wsa:ReferenceParameters>
(6) <wsman:ResourceURI> resource URI </wsman:ResourceURI>
(7) <wsman:SelectorSet>
(8) <wsman:Selector Name="Selector=name"> *
(9) Selector-value
(10) </wsman:Selector>

(11) </wsman:SelectorSet> ?

(12) </wsa:ReferenceParameters>

(13) </wsa:EndpointReference>

(14)

The following describes additional, normative constraints on the outline listed above:

 10

wsa:Address
This is the URI of the transport address

wsa:ReferenceParameters/wsman:ResourceURI
This is the URI of the management resource being accessed. Both this URI and the
wsa:Address URI form the full address of the resource.

wsa:ReferenceParameters/wsman:SelectorSet
The optional set of Selectors as described in 2.9. These are used to select an instance if
the ResourceURI represents a multi-instanced target

The above format is used when defining addresses in metadata, or when specifying return
addresses in message bodies, such as the wse:NotifyTo or the wsa:ReplyTo and
wsa:FaultTo cases.

When it is time to actually use the above address in a real SOAP message, WS-Addressing
specifies that translations take place and the headers are flattened out. While this is
described in WS-Addressing, it is worth repeating because of its critical nature.

As example, the following address definition

<wsa:EndpointReference>

 <wsa:Address> Address </wsa:Address>

 <wsa:ReferenceProperties>

 <other:UserProp>prop-value</other:UserProp>

 </wsa:ReferenceProperties>

 <wsa:ReferenceParameters>

 <wsman:ResourceURI>resURI</wsman:ResourceURI>

 <wsman:SelectorSet>

 <wsman:Selector Name="Selector=name">

 Selector-value

 </wsman:Selector>

 </wsman:SelectorSet>

 <other:UserParam> param </otherUserParam>

 </wsa:ReferenceParameters>

</wsa:EndpointReference>

 ...becomes the following when actually used in a SOAP message, in which wsa:Address
becomes wsa:To, and the reference properties and reference parameters are unwrapped
and juxtaposed:

<s:Envelope ...>

 <s:Header>

 <wsa:To> Address </wsa:To>

 <other:UserProp>prop-value</other:UserProp>

 <wsman:ResourceURI>resURI</wsman:ResourceURI>

 <wsman:SelectorSet>

 <wsman:Selector Name="Selector=name">

 Selector-value

 </wsman:Selector>

 </wsman:SelectorSet>

 <other:UserParam> param </otherUserParam>"

 ...

 11

Note also that in addition to the WS-Management-defined values, the user may additionally
specify client-specific reference properties (see other:UserProp above) and reference
parameters (see other:UserParam above) which also are included in the message if they are
part of the wsa:EndpointReference.

Note that as of this writing the WS-Addressing specification is under review, and the
reference property mechanism is likely to be removed prior to final recommendation. WS-
Management makes no use of reference properties per se (although it uses reference
parameters for things like wsman:ResourceURI), but future implementations should
examine the status of WS-Addressing before building richer implementations which make
use of reference properties.

Note that the wsa:To, wsman:ResourceURI, and wsman:SelectorSet work together to
reference the resource instance to be managed, but the actual method or operation to be
executed against this resource is indicated by the wsa:Action header.

Here is an example of WS-Management headers in an actual message:

(15) <s:Envelope

(16) xmlns:s="http://www.w3.org/2003/05/soap-envelope"

(17) xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"

(18) xmlns:wsman="http://schemas.xmlsoap.org/ws/2005/06/management">

(19) <s:Header>

(20) ...

(21) <wsa:To>http://123.99.222.36/wsman</wsa:To>

(22) <wsman:ResourceURI>http://acme.org/hardware/2005/02/storage/physDisk</wsman:ResourceURI>

(23) <wsman:SelectorSet>

(24) <wsman:Selector Name="LUN"> 2 </wsman:Selector>

(25) </wsman:SelectorSet>

(26) <wsa:Action> http://schemas.xmlsoap.org/ws/2004/09/transfer/Get </wsa:Action>

(27) <wsa:MessageID> urn:uuid:d9726315-bc91-430b-9ed8-ce5ffb858a91 </wsa:MessageID>

(28) ...

(29) </s:Header>

(30) <s:Body> ...

Definitions:

wsa:To
The network (or transport-level) address of the service

wsman:ResourceURI
The ResourceURI of the management resource to be accessed. This is only required if
the service can manage more than one set of resources and acts as a secondary
dispatching URI.

wsman:SelectorSet
A wrapper for the Selectors.

wsman:SelectorSet/wsman:Selector
Identifies or 'selects' the resource instance to be accessed, if more than one instance of
the resource exists. In this case, the Selector is "LUN" (logical unit number) and the
selected device is unit number "2".

 12

wsa:Action

Identifies which operation is to be carried out against the resource, in this case a "Get".

wsa:MessageID

Identifies this specific message uniquely for tracking and correlation purposes. The
format defined in RFC 4122 is often used in the examples in this specification, but is not
required.

R2.1-1: All messages MUST contain an endpoint reference. This applies especially
to continuation messages such as wsen:Pull or wsen:Release, which
continue an operation begun in a previous message. Even though there is
contextual information in such messages binding it to a previous operation,
the WS-Addressing endpoint reference is still required in the message to
help route it to the correct handler.

This rule clarifies that messages such as wsen:Pull or wse:Renew still require a full EPR. For
wsen:Pull, for example, this would be the same as the original wsen:Enumerate, even
though wsen:EnumerateResponse returns a context object which would seem to obviate the
need for the EPR. The EPR is still required to route the message properly. Similarly, the
wsen:Renew request uses the EPR obtained the wse:SubscriptionManager received in the
wse:SubscribeResponse.

2.2 Other WS-Addressing Headers
The following additional addressing-related header blocks occur in WS-Management
messages.

R2.2-1: A conformant service MUST recognize and process the following WS-
Addressing header blocks. Any others are optional as specified in WS-
Addressing and MAY be present, but a conformant service MAY reject any
additional headers and fail to process the message, issuing a
s:NotUnderstood fault.

• wsa:ReplyTo (required when a reponse is expected)

• wsa:FaultTo (optional)

• wsa:MessageID (required)

• wsa:Action (required)

• wsa:RelatesTo (required in responses)

The usage of these is discussed in subsequent sections.

2.3 mustUnderstand Usage
The SOAP mustUnderstand attribute for SOAP headers is to be interpreted as a "must
comply" instruction in WS-Management. For example, if a SOAP header which is listed as

 13

being OPTIONAL in this specification is tagged with mustUnderstand, the service is required
to comply or return a fault. To ensure the service treats a header as optional, the
mustUnderstand attribute should be omitted.

Obviously, if the service cannot understand the primary endpoint reference of the resource
(the ResourceURI) it will not be able to service the request in any case. Similarly, if the
wsa:Action is not understood, the implementation will not know how to process the
message. So, for the following elements, the omission or inclusion of mustUnderstand has
no real effect on the message in practice, as mustUnderstand is implied:

• wsa:To

• wsman:ResourceURI

• wsman:SelectorSet

• wsa:MessageID

• wsa:RelatesTo

• wsa:Action

• wsman:FragmentTransfer

R2.3-1: A conformant service MUST process any of the above elements identically
whether mustUnderstand is present or not.

R2.3-2: If a service cannot comply with a header marked with mustUnderstand, it
MUST issue a s:NotUnderstood fault.

As a corollary, clients may omit mustUnderstand from any of the above elements with no
change in meaning. Obviously, the client may safely always include mustUnderstand on
any of the above elements.

The goal is that the service should be tolerant of inconsistent mustUnderstand usage by
clients when there is no real chance of the request being misinterpreted.

2.4 wsa:To and wsman:ResourceURI
In request messages, the wsa:To address contains the network address of the service. In
some cases, this is sufficient to locate the management resource. In many cases, the
service is a dispatching agent for multiple resources, and an additional addressing element,
wsman:ResourceURI is present to allow the service to identify a resource within its scope.

In responses and event deliveries, only the wsa:To needs typically needs to appear and the
wsman:ResourceURI is not used.

R2.4-1: The wsa:To header MUST be present in all messages, whether requests,
responses, or events, and SHOULD reflect a valid URI. In the absence of
other requirements, it is RECOMMENDED that the network address be
suffixed by the token sequence /wsman:

(1) <wsa:To> http://123.15.166.67/wsman </wsa:To>

If the service only exposes one set of resources, then the wsa:To is the only

 14

addressing element required.

Including the network transport address in the SOAP message may seem redundant, since
the network connection would already have to be established by the client, but in cases
where the message is routed through intermediaries, this would obviously be required so
that the intermediary could examine the message and make the final connection to the
actual endpoint.

The wsa:To may encompass any number of tokens required to locate the service and a
group of resources within that service. The wsman:ResourceURI is relative to this part of
the address.

R2.4-2: The format of the wsman:ResourceURI is unconstrained provided that it
meets RFC 3986 requirements. The scheme may be wsman: if no other
scheme is applicable (see 10.9 for restrictions). See also R2.4-3 below.

The format and syntax of the ResourceURI is any valid URI according to RFC 3986. While
there is no default scheme, wsman: or http: are common defaults. If http: is used, users
may expect to find web-based documentation of the resource at that address. The wsa:To
and the wsman:ResourceURI work together to define the actual management resource:

(2) <s:Header>
(3) <wsa:To> http://123.15.166.67/wsman </wsa:To>
(4) <wsman:ResourceURI> http//schemas.acme.org/2005/02/hardware/physDisk </wsman:ResourceURI>
(5) ...

wsman: may be used for a scheme when the URIs are dymamically generated from other
sources and no other scheme makes sense. See the rules in 10.9 for such usage.

It is considered a good practice for vendor-specific or organization-specific URIs to contain
the internet domain name in the first token sequence after the scheme, such as "acme.org"
above.

R2.4-3: The wsman:ResourceURI reference parameter is REQUIRED in messages
with the following wsa:Action URIs:

Action URI

http://schemas.xmlsoap.org/ws/2004/09/transfer/Get

http://schemas.xmlsoap.org/ws/2004/09/transfer/Put

http://schemas.xmlsoap.org/ws/2004/09/transfer/Create

http://schemas.xmlsoap.org/ws/2004/09/transfer/Delete

http://schemas.xmlsoap.org/ws/2005/06/management/Rename

http://schemas.xmlsoap.org/ws/2004/09/enumeration/Enumerate

http://schemas.xmlsoap.org/ws/2004/09/enumeration/Pull

http://schemas.xmlsoap.org/ws/2004/09/enumeration/Renew

 15

http://schemas.xmlsoap.org/ws/2004/09/enumeration/GetStatus

http://schemas.xmlsoap.org/ws/2004/09/enumeration/Release

http://schemas.xmlsoap.org/ws/2004/08/eventing/Subscribe

 Note that the following messages require the EPR returned in the
wse:SubscriptionManager element of the wse:SubscribeResponse message
(WS-Eventing), so the format of the EPR is determined by the service and may
or may not include the ResourceURI:

http://schemas.xmlsoap.org/ws/2004/08/eventing/Renew

http://schemas.xmlsoap.org/ws/2004/08/eventing/GetStatus

http://schemas.xmlsoap.org/ws/2004/08/eventing/Unsubscribe

While the ResourceURI is required, it may be short and of a very simple form, such as

 http://sample.com/*

 http://sample.com/resource

 ...etc.

R2.4-4: For the request message of custom actions (methods), the ResourceURI
header MAY be present in the message to help route the message to the
correct hander. It is not an error for a service to REQUIRE this to be
present.

R2.4-5: The ResourceURI SHOULD NOT appear in other messages, such as
responses or events.

Note that wsa:To must be present in all messages, including replies and faults, even
thought it appears redundant for many transports. In practice, the wsman:ResourceURI is
only required in requests to reference the target resource. Responses are not accessing
the WS-Management space, so the wsman:ResourceURI has no meaning.

The ResourceURI itself indicates the targeted management value, management action
(method), or event source within the scope of the service.

R2.4-6: If the wsman:ResourceURI is missing and is required, the service MUST
issue a wsa:DestinationUnreachable fault with a detail code of
wsman:faultDetail/InvalidResourceURI.

R2.4-7: The wsman:ResourceURI MUST only be used to indicate the identity of a
resource, but MAY NOT be used to indicate the action being applied to that
resource, which is properly expressed using the wsa:Action URI.

R2.4-8: The ResourceURI MUST be unique and unambiguous within the scope of a
service.

Otherwise, the service has no idea which resource is actually being referenced or accessed.

 16

R2.4-9: If a valid request is received but the resource is not available at that time, a
service SHOULD issue either a wsa:DestinationUnreachable fault, but MAY
issue a wsa:EndpointUnvailable fault if it can be determined that the
resource is actually offline as opposed to being incorrectly formatted or non-
existent.

Note that all secondary messages which are continuations of prior messages, such as
wsen:Pull or wsen:Release (both of which continue wsen:Enumerate) must still contain an
endpoint reference. The fact that these messages also contain context information from a
prior message is not material to the SOAP messaging and addressing model.

Note that custom-WSDL based methods should have both a ResourceURI identity from the
perspective of addressing, and have a wsa:Action from the point of view of execution. In
many cases, the ResourceURI is simply a pseudonym for the WSDL identity and Port, and
the wsa:Action is the specific method within that Port (or Interface) definition.

While the URI could theoretically be used alone to define an instance of a multi-instance
resource, it is recommended that the wsa:To be used to locate the WS-Management
service, the wsman:ResourceURI be used to identify the resource type, and that
wsman:SelectorSet be used to reference the instance. If the resource only consists of a
single instance, then the wsman:ResourceURI alone refers to the singleton instance.

The following faults apply:

R2.4-10: The service SHOULD issue faults in the following situations relating to the
resource:

a) If the resource is offline, a wsa:EndpointUnavailable fault is returned with a
detail code of wsman:faultDetail/ResourceOffline

b) If the resource cannot be located ("not found"), or the wsman:ResourceURI is
of the incorrect form or absent, a wsa:DestinationUnreachable fault is returned
with a detail code of wsman:faultDetail/InvalidResourceURI.

c) If the resource is valid, but internal errors occur, a wsman:InternalError fault is
returned.

d) If the resource cannot be accessed for security reasons, a
wsman:AccessDenied fault is returned.

2.5 ReplyTo
WS-Management requires the following usage of wsa:ReplyTo in addressing:

R2.5-1: A wsa:ReplyTo header MUST be present in all request messages when a
reply is required (some messages do not require replies and may omit this).
This MUST either be a valid address for a new connection using any
transport supported by the service, or the URI
http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous
[see WS-Addressing] which indicates that the reply is to be delivered over
the same connection that the request arrived on. If the wsa:ReplyTo is
missing, a wsa:MessageInformationHeaderRequired fault is returned.

Note that some messages, such as event deliveries, wse:SubscriptionEnd, etc. do not
require a response and may omit a wsa:ReplyTo element.

 17

R2.5-2: A conformant service MAY require that all responses be delivered over the
same connection on which the request arrives. In this case, the URI
discussed in R2.5-1 MUST be used to indicate this. Otherwise, the service
MUST return a wsman:UnsupportedFeature fault with a detail code of
wsman:faultDetail/AddressingMode.

R2.5-3: When delivering events for which acknowledgement of delivery is required,
the sender of the event MUST include a wsa:ReplyTo element, and observe
the usage in section 7.8 of this specification.

R2.5-4: The service MUST fully duplicate the entire wsa:Address of the wsa:ReplyTo
element in the wsa:To of the reply, even if some of the information is not
understood by the service.

This is used in cases where the client included suffixes on the HTTP or HTTPS address which
are not understood by the service. The service must return these suffixes nonetheless.

R2.5-5: Any reference parameters supplied in the wsa:ReplyTo address MUST be
included in the actual response message as top-level headers as specified
in WS-Addressing unless the response is a fault. If the reponse is a fault,
then the service SHOULD include the reference properties and parameters
but MAY omit these values if the resulting message size would exceed
encoding limits.

WS-Addressing allows clients to include client-defined reference properties and reference
parameters in ReplyTo headers. The WS-Addressing specification requires that these be
extracted from requests and placed in the responses by removing the ReferenceParameters
and ReferenceProperties wrappers, placing all of the values as top-level SOAP headers in
the response as discussed in section 2.1. This allows clients to better correlate responses
with the original requests. This step cannot be omitted. In the example below, the "user-
defined content" must be included in the reply message:

(1) <s:Envelope
(2) xmlns:s="http://www.w3.org/2003/05/soap-envelope"
(3) xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"
(4) xmlns:wsman="http://schemas.xmlsoap.org/ws/2005/06/management">
(5) <s:Header>
(6) ...
(7) <wsa:To> http://1.2.3.4/wsman </wsa:To>
(8) <wsa:ReplyTo>
(9) <wsa:Address>
(10) http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous

(11) </wsa:Address>

(12) <wsa:ReferenceParameters>

(13) user-defined content

(14) </wsa:ReferenceParameters>

(15) </wsa:ReplyTo>

(16) ...

 18

R2.5-6: If the wsa:ReplyTo address is not usable or is missing, the service should not
reply to the request, as there is no way to properly reply and it should close
or terminate the connection according to the rules of the current network
transport. In these cases, the service SHOULD locally log some type of
entry to help locate the client defect later.

2.6 FaultTo
R2.6-1: A conformant service is NOT REQUIRED to support a wsa:FaultTo address

which is distinct from the WS-Addressing:ReplyTo address. If such a
request is made and is not supported by the service, a
wsman:UnsupportedFeature fault MUST be returned with a detail code of
wsman:faultDetail/AddressingMode.

If a wsa:ReplyTo is omitted from a request (a gross error), then transport-level mechanisms
are typically used to fail the request, since it is not certain where the fault should be sent.
It is not an error for the service to simply shut the connection down in this case.

R2.6-2: If wsa:FaultTo is omitted, the service MUST return the fault to the
wsa:ReplyTo address if a fault occurs.

R2.6-3: A conformant service MAY require that all faults be delivered to the client over
the same transport or connection on which the request arrives. In this case,
the URI MUST be
http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous
[see WS-Addressing]. If services do not support separately-addressed fault
delivery and the wsa:FaultTo is any other address, a
wsman:UnsupportedFeature fault MUST be returned with a detail code of
wsman:faultDetail/AddressingMode.

Note that this specification does not restrict richer implementations from fully supporting
wsa:FaultTo.

R2.6-4: Any reference properties and reference parameters supplied in the
wsa:FaultTo address SHOULD be included in the actual fault as top-level
headers as specified in WS-Addressing. In some cases, inclusion of this
information would cause the fault to exceed the encoding size limits, and
thus MAY be omitted in those cases.

WS-Addressing allows clients to include client-defined reference properties and reference
parameters in wsa:FaultTo headers. The WS-Addressing specification requires that these be
extracted from requests and placed in the faults by removing the ReferenceParameters and
ReferenceProperties wrappers, placing all of the values as top-level SOAP headers in the
fault. This allows clients to better correlate faults with the original requests. This step
should not be omitted except in cases where the resulting fault would be too large and
exceed encoding limit restrictions elsewhere in this specification.

In the following example, the "user-defined content" MUST appear in the fault, if it occurs:

(1) <s:Envelope

 19

(2) xmlns:s="http://www.w3.org/2003/05/soap-envelope"
(3) xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"
(4) xmlns:wsman="http://schemas.xmlsoap.org/ws/2005/06/management">
(5) <s:Header>
(6) ...
(7) <wsa:To> http://1.2.3.4/wsman </wsa:To>
(8) <wsa:FaultTo>
(9) <wsa:Address>
(10) http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous

(11) </wsa:Address>

(12) <wsa:ReferenceParameters>

(13) user-defined content

(14) </wsa:ReferenceParameters>

(15) </wsa:FaultTo>

(16) ...

R2.6-5: If the wsa:FaultTo address is not usable, the service should not reply to the
request, as there is no way to properly return the fault. Similarly, if no
FaultTo address is supplied, and the service does not have sufficient
information to properly fault the response, it should not reply and should
close the network connection. In these cases, the service SHOULD locally
log some type of entry to help locate the client defect later.

R2.6-6: The service MUST properly duplicate the wsa:Address of the wsa:FaultTo
element in the wsa:To of the reply, even if some of the information is not
understood by the service.

This is used in cases where the client included suffixes on the HTTP or HTTPS address which
are not understood by the service. The service must return these suffixes nonetheless.

2.7 MessageID and RelatesTo
R2.7-1: The MessageID and RelatesTo URIs MAY be of any format, as long as they

are valid URIs according to RFC 3986. Because URIs may differ only by
case, two URIs with the same characters are considered different,
regardless of what the URI represents.

 The following two formats are endorsed by this specification. The first is
considered a best-practice, as it is backed by IETF RFC 4122 [23]:

 urn:uuid:xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
 or
 uuid:xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx

In the examples above, each x is an upper- or lower-case hexadecimal digit
(lower case required by RFC 4122); there are no spaces or other tokens. It
is NOT REQUIRED that this format be used or that it formally be a DCE-
style GUID with provable uniqueness properties, although this is typical.

 Regardless of format, the URI may not exceed the maximum defined in
R10.6-1.

Because GUIDs have a numeric meaning as well as a string meaning, this can lead to
confusion. The same GUID in lower-case is a different URI than the same GUID in upper

 20

case. This is because the value is being implied rather than the URI representation. WS-
Management works with the URI value itself, not the underlying value representation.
Services are free to interpret the URI in any way, but must treat the value as a URI and not
as its underlying value and may not alter the case usage when repeating the message or
any of the MessageID values in subsequent messages.

Note that RFC 4122 requires the digits to be lower case. This is the responsibility of the
client, as the service simply processes the values as URI values and is not required to
analyze the URI for correctness or compliance. The service must of course replicate the
client usage in the RelatesTo reply, and may not alter the case usage.

R2.7-2: The MessageID SHOULD be generated according to any algorithm which
ensures that no two MessageIDs will repeat. Since the value is treated as
case-sensitive (R2.7-1), confusion may arise if the same value is reused
differing only in case. The service MUST NOT create or employ
MessageID values which differ only in case. For any message transmitted
by the service or the client the MessageID MUST NOT be reused.

While services and clients should not issue different MessageIDs which differ only by case,
the service is not required to detect this, or is it required to analyze the URI for syntactic
correctness or repeated use.

R2.7-3: The RelatesTo MUST be present in all response messages and faults, and
MUST contain the MessageID of the associated request message and
MUST match the original in case, being treated as a URI value and not as a
binary GUID value.

R2.7-4: If the MessageID is not parsable or is missing, a
wsa:InvalidMessageInformationHeader fault SHOULD be returned.

Examples:

(1) <wsa:MessageID>
(2) uuid:d9726315-bc91-430b-9ed8-ce5ffb858a91
(3) </wsa:MessageID>
(4)
(5) <wsa:MessageID>
(6) anotherScheme:ID/12310/1231/16607/25
(7) </wsa:MessageID>

Note that mustUnderstand can be omitted for either wsa:MessageID or wsa:RelatesTo with
no change in meaning.

2.8 Selectors
Selectors are optional elements to reference a specific Resource instance in the set of all
instances implied by the ResourceURI.

In practice, because the ResourceURI often acts as a table or a 'class', the SelectorSet
element is a discriminant used to reference a specific 'row' or 'instance'. If there is only

 21

one instance of a resource implied by the ResourceURI, the SelectorSet may be omitted. If
more than one Selector value is required, the entire set of Selectors is interpreted by the
service in order to reference the targeted object. The service is free to examine as many
Selectors as required and ignore those which are redundant once the instance has been
identified.

The Selectors act as a 'key' mechanism against the space implied by the ResourceURI.
However, there is no implication that the Selector values are part of the returned resource
or that Selectors be unique across instances, only that the set of all Selectors in a given
message results in a reference to a set of instances of the appropriate cardinality for the
operation. A SelectorSet used with wxf:Get must result in a reference to a single instance,
while a SelectorSet used with wsen:Enumerate may result in a set of multiple instances.”
This is critical for small footprint implementations that cannot afford a full XPath processor.

Similarly, Selectors may be used in other operations such as wse:Subscribe to scope the
domain of emitted events. See sections 5.3 and 7.2.2 for more information on using
Selectors in these operations.

Note that in some information domains, the values referenced by the Selectors are "keys"
which are part of the resource content itself, whereas in other domains the Selectors are
part of a logical or physical directory system or search space. In these cases, the Selectors
are used to reference the resource, but are not part of the representation.

R2.8-1: If a resource has more than one instance, a wsman:SelectorSet element
MAY be used to distinguish which instance is targeted if the common
endpoint reference model is in use. Any number of wsman:Selector values
may appear with the wsman:SelectorSet, as required to identify the precise
instance of the management resource. Selector names and values MAY be
treated case-insensitively or case-sensitively by the service (see 10.8), as
required by the underlying execution environment.

If the client needs to discover the policy on how case is interpreted, the service should
provide metadata documents which describe this. The format of such metadata is beyond
the scope of this specification.

R2.8-2: All content within the SelectorSet element is to be treated as a single
reference parameter with a scope relative to the ResourceURI.

R2.8-3: The service SHOULD examine whatever Selectors are required to reference
the target, and MAY ignore any additional Selectors once the target has
been identified. In this sense, the set of Selectors is logically ANDed and
the service has the option to ignore any additional redundant Selectors. If
the set of Selectors is insufficient to reference a resource or contain invalid
names or values for the targeted resource, then a wsman:InvalidSelectors
fault SHOULD be returned to the client with the following detail codes:

a) wsman:faultDetail/InsufficientSelectors if Selectors are missing

b) wsman:faultDetail/TypeMismatch if Selector values are the wrong types

c) wsman:faultDetail/InvalidValue if the Selector value is of the correct type from
the standpoint of XML types, but out of range or otherwise illegal in the
specific information domain.

d) wsman:faultDetail/AmbiguousSelectors if the Selectors cannot isolate a single
instance.

e) wsman:faultDetail/UnexpectedSelectors if the Name is not a recognized
Selector name.

 22

This rule allows selector names to be disjoint across instances of the same resource.
Selectors should be treated loosely. If five selectors are defined, but two would suffice for
locating a specific instance, then only the two selectors must be present.

R2.8-4: The Selector Name attribute MUST NOT be duplicated at the same level of
nesting. The service SHOULD return a wsman:InvalidSelectors fault with a
detail code of wsman:faultDetail/DuplicateSelectors if this occurs.

This specification does not mandate the use of Selectors. Some implementations may
decide to use complex URI schemes in which the ResourceURI itself implicitly identifies the
instance. However, most information domains will benefit from the separation of type and
instance identities into separate addressing elements.

Format:

(1) <s:Envelope
(2) xmlns:s="http://www.w3.org/2003/05/soap-envelope"
(3) xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"
(4) xmlns:wsman="http://schemas.xmlsoap.org/ws/2005/06/management">
(5) <s:Header>
(6) ...
(7) <wsa:To> service transport address </wsa:To>
(8) <wsman:ResourceURI> ResourceURI </wsman:ResourceURI>
(9) <wsman:SelectorSet> ?
(10) <wsman:Selector Name="name"> value </wsman:Selector> +

(11) </wsman:Selector>

(12) ...

(13) </s:Header>

(14) ...

The following describes additional, normative constraints on the outline listed above:

wsa:To

Network address and ResourceURI suffix

wsman:SelectorSet

The wrapper for one or more Selector elements required to reference the instance.

wsman:SelectorSet/wsman:Selector

Used to describe the Selector and its value. If more than one Selector is required, then
there is one Selector element for each part of the overall Selector. The value of this
element is the Selector value.

wsman:SelectorSet/wsman:Selector/@Name

The name of the Selector (to be treated in a case-insensitive manner).

The value of a Selector may be a nested endpoint reference. In the example below, the
Selector on line 22 is a part of a SelectorSet consisting of nested EPR (lines 23-30) with its
own Address+ResourceURI and SelectorSet elements:

 23

(1) <s:Envelope
(2) xmlns:s="http://www.w3.org/2003/05/soap-envelope"
(3) xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"
(4) xmlns:wsman="http://schemas.xmlsoap.org/ws/2005/06/management">
(5) <s:Header>
(6) ...
(7) <wsman:SelectorSet>
(8) <wsman:Selector Name="Primary"> 123 </wsman:Selector>
(9) <wsman:Selector Name="EPR">
(10) <wsa:EndpointReference>

(11) <wsa:Address> address </wsa:Address>

(12) <wsa:ReferenceParameters>

(13) <wsman:ResourceURI> resource URI </wsman:ResourceURI>

(14) <wsman:SelectorSet>

(15) <wsman:Selector Name="name"> value </wsman:Selector>

(16) </wsman:SelectorSet>

(17) </wsa:ReferenceParameters>

(18) </wsa:EndpointReference>

(19) </wsman:Selector>

(20) </wsman:SelectorSet>

(21) ...

(22)

R2.8-5: The value of a wsman:Selector MUST be one of

(a) A simple type as defined in the XML schema namespace
http://www.w3.org/2001/XMLSchema

(b) A nested wsa:EndpointReference using the WS-Management addressing model.

A service MAY fault Selector usage with wsman:InvalidSelectors if the Selector is not
a simple type or of a supported schema.

R2.8-6: A conformant service MAY reject any Selector or nested Selector with a
nested endpoint reference whose wsa:Address value is not the same as the
primary wsa:To value or is not
http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous.

The primary purpose for this nesting mechanism is to allow resources which can answer
questions about other resources.

2.9 Action
The WS-Addressing:Action URI is typically used to indicate the "method" being invoked
against the resource. So, the ResourceURI indicates what is being accessed, and the
Action indicates which method or operation is being applied.

R2.9-1: The wsa:Action URI MUST NOT be used to identify the specific management
resource or instance, but only the operation (method) to use against that
resource.

R2.9-2: For all resource endpoints, a service MUST return a wsa:ActionNotSupported
fault (defined in WS-Addressing) if a requested action is not supported by
the service for the specified resource.

 24

In other words, to model the "Get" of item "Disk", the ResourceURI defines the reference to
"Disk" (using Selectors to indicate which disk), but the wsa:Action URI is what will contain
the "Get". Implementations are free to additionally support custom methods which
combine the notion of "Get" and "Disk into a single "GetDisk" action, as long as they strive
to support the separated form to maximize interoperation. One of the main points behind
WS-Management is to unify common methods wherever possible.

R2.9-3: If a service exposes any of the following types of capabilities, a conformant
service MUST at least expose that capability using the definitions in the
following table according to the rules of this specification. The service MAY
OPTIONALLY expose additional similar functionality using a distinct
wsa:Action URI.

Action URI Description

http://schemas.xmlsoap.org/ws/2004/09/transfer/Get Models any simple single

item retrieval

http://schemas.xmlsoap.org/ws/2004/09/transfer/GetResponse Response to the above "Get"

http://schemas.xmlsoap.org/ws/2004/09/transfer/Put Models an update of an

entire item

http://schemas.xmlsoap.org/ws/2004/09/transfer/PutResponse Response to "Put"

http://schemas.xmlsoap.org/ws/2004/09/transfer/Create Models creation of a new

item

http://schemas.xmlsoap.org/ws/2004/09/transfer/CreateResponse The response to "Create"

http://schemas.xmlsoap.org/ws/2004/09/transfer/Delete Models the deletion of an

item

http://schemas.xmlsoap.org/ws/2004/09/transfer/DeleteResponse The response to the delete

http://schemas.xmlsoap.org/ws/2005/06/management/Rename Renames the item

http://schemas.xmlsoap.org/ws/2005/06/management/RenameResponse Response to above message

http://schemas.xmlsoap.org/ws/2004/09/enumeration/Enumerate Begins an enumeration or

query

http://schemas.xmlsoap.org/ws/2004/09/enumeration/EnumerateResponse Response to above

enumeration

http://schemas.xmlsoap.org/ws/2004/09/enumeration/Pull Retrieve the next batch of

results from enumeration

http://schemas.xmlsoap.org/ws/2004/09/enumeration/PullResponse Response to the above "Pull"

http://schemas.xmlsoap.org/ws/2004/09/enumeration/Renew Renews an enumerator

which may have timed out

[not required in WS-

 25

Management]

http://schemas.xmlsoap.org/ws/2004/09/enumeration/RenewResponse Response to the "Renew"

[not required in WS-

Management]

http://schemas.xmlsoap.org/ws/2004/09/enumeration/GetStatus Gets the status of the

enumerator

[not required in WS-

Management]

http://schemas.xmlsoap.org/ws/2004/09/enumeration/GetStatusResponse Response to the "GetStatus"

request

[not required in WS-

Management]

http://schemas.xmlsoap.org/ws/2004/09/enumeration/Release Releases an active

enumerator

http://schemas.xmlsoap.org/ws/2004/09/enumeration/ReleaseResponse Response to the above

"Release"

http://schemas.xmlsoap.org/ws/2004/09/enumeration/EnumerationEnd Notification than an

enumerator has terminated

[not required in WS-

Management]

http://schemas.xmlsoap.org/ws/2004/08/eventing/Subscribe Models a subscription to an

event source

http://schemas.xmlsoap.org/ws/2004/08/eventing/SubscribeResponse Response to the above

"Subscribe"

http://schemas.xmlsoap.org/ws/2004/08/eventing/Renew Renews a subscription prior

to its expiration

http://schemas.xmlsoap.org/ws/2004/08/eventing/RenewResponse Response to the renew

request

http://schemas.xmlsoap.org/ws/2004/08/eventing/GetStatus Requests the status of a

subscription

http://schemas.xmlsoap.org/ws/2004/08/eventing/GetStatusResponse The response to the

"GetStatus"message

http://schemas.xmlsoap.org/ws/2004/08/eventing/Unsubscribe Used to remove an active

subscription

http://schemas.xmlsoap.org/ws/2004/08/eventing/UnsubscribeResponse The response to the

Unsubscribe operation

http://schemas.xmlsoap.org/ws/2004/08/eventing/SubscriptionEnd A message delivered to

indicate that a subscription

has terminated.

 26

http://schemas.xmlsoap.org/ws/2005/06/management/Events A batched delivery of events

based on a subscription

http://schemas.xmlsoap.org/ws/2005/06/management/Heartbeat A pseudo-event that models

a heartbeat of an active

subscription. Delivered

when no real events are

available, but used to

indicate that the event

subscription and delivery

mechanism is still active.

http://schemas.xmlsoap.org/ws/2005/06/management/DroppedEvents A pseudo-event which

indicates that the real event

was dropped.

http://schemas.xmlsoap.org/ws/2005/06/management/Ack Used by event subscribers to

acknowledge receipt of

events. Allows event

streams to be strictly

sequenced.

http://schemas.xmlsoap.org/ws/2005/06/management/Event Used for a singleton event

which does not define its

own action.

R2.9-4: A custom action MAY BE supported if the operation is a custom method
whose semantic meaning is not present in the table, or if the item is an
event.

R2.9-5: All event deliveries MUST contain a unique action URI which identifies the
type of the event delivery. For singleton deliveries where there is only one
event per message (the delivery mode
http://schemas.xmlsoap.org/ws/2004/08/eventing/DeliveryModes/Push), the
wsa:Action URI defines the event type. For other delivery modes, the
Action varies, as described in section 6 of this specification.

2.10 wsa:From
The wsa:From header can be used in any messages, responses, or events to indicate the
source. When the same connection is used for both request and reply, this field provides
no useful information in practice, but may be useful in cases where the response arrives on
a different connection.

R2.10-1: A conformant service MAY include a wsa:From address in message, but is
NOT REQUIRED to do so. A conformant service SHOULD process any
incoming message which has a wsa:From element.

R2.10-2: A conformant service SHOULD NOT fault any message with a wsa:From
element, whether or not mustUnderstand is included

Note that it is trivial to process the wsa:From message, since there is no effect on the

 27

meaning of the message. The From address is primarily for auditing and logging purposes.
This may occur in a message of any type, whether a request, reply, singleton message, or
event.

3.0 WS-Management Control Headers

3.1 Operation Timeout
Most management operations are time-critical due to quality of service constraints and
obligations. If they cannot be completed in a specified time, the service must return a fault
so that a client can comply with its obligations.

The following header value may be supplied with any WS-Management message, indicating
that the client expects a response or a fault within the specified time:
<wsman:OperationTimeout> xs:duration </wsman:OperationTimeout>

R3.1-1: All request messages MAY contain a wsman:OperationTimeout header
element that indicates the maximum amount of time the client is willing to
wait for the service to issue a response. The service SHOULD interpret
the timeout countdown as beginning from the point the message is
processed until a response can be generated.

R3.1-2: The Service SHOULD immediately issue a wsman:TimedOut fault if this time
is exceeded and the operation is not yet complete. If the OperationTimeout
value is not valid, then a wsman:InvalidHeader fault SHOULD be generated
with a detail code of wsman:faultDetail/InvalidTimeout.

R3.1-3: If the services does not support user-defined timeouts, a wsman:
UnsupportedFeature fault SHOULD be returned with a detail code of
wsman:faultDetail/OperationTimeout.

R3.1-4: If the wsman:OperationTimeout is omitted, the service MAY interpret this as
an instruction to block indefinitely until a response is available, or MAY
impose a default timeout.

These rules do not preclude services from supporting infinite or very long timeouts. Given
that network connections seldom will block indefinitely with no traffic occurring, some type
of transport timeout is likely in any case. Also note that the countdown is initiated from the
time the message is received, so network latency is not included. If a client needs to
discover the range of valid timeouts or defaults, metadata should be retrieved and the
format of such metadata is beyond the scope of this specification.

If the timeout occurs in such a manner that the service has already performed some of the
work associated with the request, an anomalous condition is reached in terms of service
state. This specification does not attempt to address behavior in this situation. Clearly,
services should undo the affects of any partially complete operations if possible, but this is
not always practical. It is recommended that the service keep a local log of requests and
operations which can be queried in such cases later by the client.

 28

R3.1-5: If mustUnderstand is applied to the wsman:OperationTimeout, then the
service MUST observe the requested value or return the fault specified in
R3.1-2. The service SHOULD attempt to complete the request within the
specified time or issue a fault without any further delay.

It is recommended that clients always omit the mustUnderstand header for uniform
behavior against all implementations. It is not an error for a compliant service to ignore the
timeout value or treat it as a hint if mustUnderstand is omitted.

Example of a correctly formatted 30-second timeout appears as follows in the SOAP header:
<wsman:OperationTimeout>PT30S</wsman:OperationTimeout>

If the transport timeout occurs before the actual wsman:OperationTimeout, the operation
should be treated as specified in 10.4, the same as a failed connection. In practice, these
should be configured so that the network transport timeout is larger than any expected
wsman:OperationTimeout.

This specification establishes no requirement regarding the internal behavior of service
regarding incomplete operations if a timeout occurs. If a wxf:Delete operation is in
progress and a timeout occurs, it is up to the service whether to attempt a rollback or roll-
forward of the deletion, even though it issues a wsman:TimedOut fault. The service may
elect to include additional information in the fault (see 11.5) regarding what its internal
policy is in this regard.

It is recommended that the service attempt to return to the state that existed before the
operation was attempted, but clearly this is not always possible. It is expected that clients
will attempt to discover what happened by doing subsequent wxf:Get operations or by
querying internal logs kept by the service.

3.2 Maximum Envelope Size
To prevent a response beyond the capability of the client, the request message may contain
a restriction on the response size.

The following header value may be supplied with any WS-Management message, indicating
that the client expects a response whose total SOAP envelope body does not exceed the
specified number of octets:
<wsman:MaxEnvelopeSize> xs:long </wsman:MaxEnvelopeSize>

The limitation is on the entire envelope, as resource constrained implementations need a
reliable figure on the required amount of memory for all SOAP processing, not just the
envelope Body, which leaves the Header totally ambiguous.

R3.2-1: All request messages MAY contain a wsman:MaxEnvelopeSize header
element that indicates the maximum number of octets (not characters) in
the entire SOAP envelope in the response. If the service cannot compose
a reply within the requested size, a wsman:EncodingLimit fault SHOULD be
returned with a detail code of wsman:faultDetail/MaxEnvelopeSize.

R3.2-2: If mustUnderstand is set to true, the service MUST comply with the request.
If the response would exceed the maximum size, then a
wsman:EncodingLimit fault SHOULD be returned. Since a service may
execute the operation prior to knowing the response size, the service
SHOULD undo any effects of the operation prior to issuing the fault. If the
operation cannot be reversed (such as a destructive wxf:Put or a

 29

wxf:Delete, or a wxf:Create), the service MUST indicate that the operation
succeeded in the wsman:EncodingLimit fault with a detail code of
wsman:faultDetail/UnreportableSuccess.

R3.2-3: If mustUnderstand is set to false, the service MAY ignore the header.

R3.2-4: The service SHOULD reject any value of MaxEnvelopeSize which is less
than 8192 octets. This number is the safe minimum in which faults can be
reliably encoded for all character sets. If the requested size is less than
this, the service SHOULD return a wsman:EncodingLimit fault with a detail
code of wsman:faultDetail/MininumEnvelopeLimit.

Note that if the service exceeds its own encoding limit (independently of what is specified by
the client), the fault is wsman:EncodingLimit with a detail code of
wsman:faultDetail/ServiceEnvelopeLimit.

3.3 Locale
Management operations often span locales, and many items in responses can require
translation. Typically, this applies to descriptive information intended for human readers
which is sent back in the response. If the client requires such output to be translated to a
specific language, it may employ the optional wsman:Locale header which makes use of the
standard XML attribute xml:lang:

(1) <wsman:Locale xml:lang="xs:language" s:mustUnderstand="false" />

R3.3-1: If mustUnderstand is omitted or set to "false", the service SHOULD utilize this
value when composing the response message and adjust any localizable
values accordingly. This is the RECOMMENDED usage for most cases.
The locale is treated as a "hint" in this case.

R3.3-2: If mustUnderstand is set to true, then the service MUST ensure that the replies
contain localized information where appropriate or else issue a
wsman:UnsupportedFeature fault with a detail code of
wsman:faultDetail/Locale. A service MAY always fault if wsman:Locale
contains s:mustUnderstand, since it may not be able to ensure that the
reply is localized.

Some implementations delegate the request to another subsystem for processing and the
service cannot be certain that the localization actually occurred.

R3.3-3: The value of the lang attribute in the wsman:Locale header must be a valid
RFC 3066 language code.

R3.3-4: In any response, event, or singleton message, the service SHOULD include
the xml:lang attribute in the s:Envelope (or other elements) to signal to the
receiver that localized content appears in the <Body> of the message. This
may be omitted if no descriptive content appears in the Body. It is not an
error to always include it, even if no descriptive content occurs:

(1) s:Envelope
(2) xml:lang="en-us"
(3) xmlns:s="http://www.w3.org/2003/05/soap-envelope"

 30

(4) xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"
(5) xmlns:wsman="http://schemas.xmlsoap.org/ws/2005/06/management">
(6) <s:Header>
(7) ...

The xml:lang attribute may appear on any content in the message, although it is simplest
for the client to always check for it in one place, the s:Envelope wrapper.

R3.3-5: For operations which span multiple message sequences, the wsman:Locale
element is processed in the initial message only. It SHOULD be ignored in
subsequent messages, since the first message establishes the required
locale. The service MAY issue a fault if the wsman:Locale is present in
subsequent messages and the value is different from that used in the
initiating request.

This applies primarily to wsen:Enumerate and wsen:Pull messages. The locale is clearly
established once during the initial wsen:Enumerate request, so changing the locale during
the enumeration would serve no purpose. The service ignores any wsman:Locale elements
in subsequent wsen:Pull messages, but the client should ensure that the value does not
change between wsen:Pull requests. This uniformity makes it easier for the client to
construct messages.

It is recommended (as established in R3.3-1) that the wsman:Locale element never contain
a mustUnderstand attribute. In this way, the client will not receive faults in unexpected
places.

3.4 Options
The OptionSet header is used to pass a set of switches to server to modify or refine the
nature of the request. This facility is intended to help the service to observe any context
or side effects desired by the client, but not to alter the output schema or to modify the
meaning of the addressing. Options are similar to switches used in command-line shells in
that they are service-specific text-based extensions.

R3.4-1: Any request message MAY contain a wsman:OptionSet header, which wraps
a set of optional switches or controls on the message. These help the
service compose the desired reply or observe the required side-effect.

R3.4-2: The service SHOULD NOT send responses, unacknowledged events, or
singleton messages containing wsman:OptionSet headers, unless it is
acting in the role of a client to another service. They are intended for
request messages alone to which a subsequent response is expected,
including acknowledged events.

R3.4-3: If the mustUnderstand atttibute is omitted from the OptionSet block, then
the service MAY ignore the entire wsman:OptionSet block. If it is present
and the service does not support wsman:OptionSet, the service MUST
return a s:NotUnderstood fault.

Services must be able to process an OptionSet block if it is present. They are not required
to understand or process individual options, however, as shown in R3.4-6. However, if
musComply is used on any given Option, then mustUnderstand must be set to "true". This

 31

avoids the incongruity of allowing the entire OptionSet block to be ignored while having
mustComply on individual options.

R3.4-4: Each resource MAY observe its own set of options. There is no requirement
to support consistent option usage across resource boundaries. The
metadata formats and definitions of options are beyond the scope of this
specification and may be service-specific.

R3.4-5: Any number of individual Option elements may appear under the
wsman:OptionSet wrapper. Option Names MAY be repeated if appropriate.
The content MUST be a simple string (xs:string). This specification places
no restrictions on whether the names or values are to be treated in a case-
sensitive or case-insensitive manner. Case usage MUST be retained as
the OptionSet and its contents are propagated through SOAP
intermediaries.

Interpretation of the option with regard to case sensitivity is up to the service and the
definition of the specific option. This is because the value must usually be passed through
to real-world subsystems which inconsistently expose case usage. Where interoperation is a
concern, the client should omit both mustUnderstand and mustComply.

R3.4-6: Individual Option values may be advisory or may be required by the client.
Any option marked with the MustComply attribute set to "true" must be
observed and executed by the service, or a wsman:InvalidOptions fault is
returned with a detail code of wsman:faultDetail/NotSupported. Any option
not marked with this attribute (or if the attribute is set to "false") is advisory
to the service and MAY be ignored if the service. If any option is marked
with MustComply set to "true", then mustUnderstand MUST be used on the
entire wsman:OptionSet block.

This capability is required when the service is delegating interpretation and execution of the
options to another component. In many cases, the SOAP processor cannot know if the
Option was observed or not, and can only pass it along to the next subsystem.

R3.4-7: Options MAY optionally contain a Type attribute which indicates the data type
of the content of the Option element. A service MAY REQUIRE that this
attribute be present on any given Option, and that it be set to the QName of
a valid XML schema data type. Only the standard types declared in the
http://www.w3.org/2001/XMLSchema namespace are supported in this
version of WS-Management.

This may help some services distinguish numeric or date/time types from other string
values.

R3.4-8: Options SHOULD NOT be used as a replacement for the documented
parameterization technique for the message, but SHOULD only be used as
a modifier for it.

Options are primarily used to establish context or otherwise instruct the service to perform
side-band operations while performing the operation, such as turning on logging or tracing.

R3.4-9: The following faults SHOULD be returned by the service:

a) wsman:InvalidOptions with a detail code of wsman:faultDetail/NotSupported in
cases where Options are not supported.

 32

b) wsman:InvalidOptions with a detail code of wsman:faultDetail/InvalidName in
cases where one or more options names were not valid or not supported by
the specific resource.

c) wsman:InvalidOptions with a detail code of wsman:faultDetail/InvalidValue in
cases where the value was not correct for the Option name.

R3.4-10: For operations which span multiple message sequences, the
wsman:OptionSet element is processed in the initial message only. It
SHOULD be ignored in subsequent messages, since the first message
establishes the required set of options. The service MAY issue a fault if
the wsman:OptionSet is present in subsequent messages and the value is
different from that used in the initiating request, or the service MAY ignore
the values of wsman:OptionSet in such messages.

This applies primarily to wsen:Enumerate and wsen:Pull messages. The set of options is
clearly established once during the initial wsen:Enumerate request, so changing the options
during the enumeration would constitute an error.

Options are intended to help make operations more efficient or to preprocess output on
behalf of the client. For example, the Options could be used to indicate to the service that
the returned values should be recomputed and that cached values should not be used, or
that any optional values in the reply may be omitted. Alternately, the Options could be
used to indicate verbose output within the limits of the XML schema associated with the
reply.

Option values should not contain XML, but are limited to xs:string values. If XML-based
input is required, then a custom operation (method) with its own wsa:Action is the correct
model for the operation. These rules are intended to ensure that no backdoor parameters
over well-known message types are introduced. For example, when issuing a
wse:Subscribe request, the message already defines a technique for passing an event filter
to the service, so the Options should not be used to circumvent this and pass a filter using
an alternate method.

Example of wsman:OptionSet:

(1) <s:Envelope
(2) xmlns:s="http://www.w3.org/2003/05/soap-envelope"
(3) xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"
(4) xmlns:wsman="http://schemas.xmlsoap.org/ws/2005/06/management"
(5) xmlns:xs="http://www.w3.org/2001/XMLSchema">
(6) <s:Header>
(7) ...
(8) <wsman:OptionSet s:mustUnderstand="true">
(9) <wsman:Option Name="VerbosityLevel">
(10) Level3

(11) </wsman:Option>

(12) <wsman:Option Name="LogAllRequests" MustComply ="true" Type="xs:int"/>

(13) </wsman:OptionSet>

(14) ...

(15)

 33

The following describes additional, normative constraints on the outline listed above:

wsman:OptionSet
Used to wrap individual option blocks. In this example s:mustUnderstand is set to
"true", indicating that the overall block must be processed using the rules above and
cannot be ignored.

wsman:OptionSet/wsman:Option/@Name
Identifies the option (an xs:string), which may be a simple name or a URI. This name is
scoped to the resource to which it applies. The Name MAY be repeated in subsequent
elements. Name cannot be blank and should be a short non-colliding URI which is
vendor-specific.

wsman:OptionSet/wsman:Option/@MustComply
If set to "true", the option must be observed, otherwise it is advisory or a hint.

wsman:OptionSet/wsman:Option/@Type
Optional attribute. If present, this indicates the data type of the content of the element,
which helps the service to interpret the content. A service may require this to be
present on any given Option element.

wsman:OptionSet/wsman:Option
The content of the option. This may be any simple string value. If the Option value is
null, then it should be interpreted as logical 'true' and the option is 'enabled'. The
following example turns on the "Verbose" option:

 <wsman:Option Name="Verbose"/>

Options are logically false if they are not present in the message. All other cases require an
explicit string to indicate the option value. The reasoning for allowing the same option to
repeat is to allow specification of a list of options of the same name.

4.0 Resource Access

4.1 Introduction
Resource access applies to all synchronous operations regarding getting, setting, and
enumerating values. The WS-Transfer specification is used as a basis for simple unary
resource access: Get, Put, Delete, and Create. Multi-instance retrieval is achieved using
WS-Enumeration messages. This specification does not define any messages or techniques
for doing batched operations, such as batched Get or Delete. All such operations must be
sent as a series of single messages.

4.2 WS-Transfer
WS-Transfer brings wxf:Get, wxf:Put, wxf:Create and wxf:Delete into the WS-Management
space.

A full example of a hypothetical wxf:Get request and associated response follow:

 34

(1) <s:Envelope
(2) xmlns:s="http://www.w3.org/2003/05/soap-envelope"
(3) xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"
(4) xmlns:wsman="http://schemas.xmlsoap.org/ws/2005/06/management">
(5) <s:Header>
(6)
(7) <wsa:To>
(8) http://1.2.3.4/wsman/
(9) </wsa:To>
(10) <wsman:ResourceURI>wsman:samples.org/2005/02/physicalDisk</wsman:ResourceURI>

(11) <wsa:ReplyTo>

(12) <wsa:Address>

(13) http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous

(14) </wsa:Address>

(15) </wsa:ReplyTo>

(16) <wsa:Action>

(17) http://schemas.xmlsoap.org/ws/2004/09/transfer/Get

(18) </wsa:Action>

(19) <wsa:MessageID>

(20) uuid:d9726315-bc91-430b-9ed8-ce5ffb858a87

(21) </wsa:MessageID>

(22) <wsman:SelectorSet>

(23) <wsman:Selector Name="LUN"> 2 </wsman:Selector>

(24) </wsman:SelectorSet>

(25) <wsman:OperationTimeout> PT30S </wsman:OperationTimeout>

(26)

(27) </s:Header>

(28) <s:Body/>

(29) </s:Envelope>

Note that the wsa:ReplyTo occurs on the same connection as the request (line 8), the action
is a wxf:Get (line 12), and the ResourceURI (line 8) and wsman:SelectorSet (line 21) are
used to address the requested management information. The operation is expected to be
completed in 30 seconds or a fault should be returned to the client (line 24).

Also note that there is no content within the s:Body in a wxf:Get request.

A hypothetical response could be:

(30) <s:Envelope

(31) xmlns:s="http://www.w3.org/2003/05/soap-envelope"

(32) xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"

(33) xmlns:wsman="http://schemas.xmlsoap.org/ws/2005/06/management">

(34) <s:Header>

(35) <wsa:To>

(36) http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous

(37) </wsa:To>

(38) <wsa:Action s:mustUnderstand="true">

(39) http://schemas.xmlsoap.org/ws/2004/09/transfer/GetResponse

(40) </wsa:Action>

(41) <wsa:MessageID s:mustUnderstand="true">

(42) uuid:d9726315-bc91-430b-9ed8-ce5ffb858a88

 35

(43) </wsa:MessageID>

(44) <wsa:RelatesTo>

(45) uuid:d9726315-bc91-430b-9ed8-ce5ffb858a87

(46) </wsa:RelatesTo>

(47) </s:Header>

(48) <s:Body>

(49) <PhysicalDisk xmlns="http://schemas.acme.com/2005/02/samples/physDisk">

(50) <Manufacturer> Acme, Inc. </Manufacturer>

(51) <Model> 123-SCSI 42 GB Drive </Model>

(52) <LUN> 2 </LUN>

(53) <Cylinders> 16384 </Cylinders>

(54) <Heads> 80 </Heads>

(55) <Sectors> 63 </Sectors>

(56) <OctetsPerSector> 512 </OctetsPerSector>

(57) <BootPartition> 0 </BootPartition>

(58) </PhysicalDisk>

(59) </s:Body>

(60) </s:Envelope>

Note that the response uses the wsa:To address (line 35) that was specified in wsa:ReplyTo
in the original request, and that the wsa:MessageID for this response is unique (line 40) and
that the wsa:RelatesTo (line 43) contains the uuid of the wsa:MessageID of the original
request in order to allow the client to correlate the response.

The Body (on lines 47-58) contains the requested resource representation.

The same general approach exists for wxf:Delete, except that no response occurs in the
s:Body. The wxf:Create and wxf:Put operations are also similar, except that there is a
s:Body on input to specify the values being created or updated.

4.3 Addressing Uniformity
In general, the service should expose addressing usage which is identical for the operations.
In other words, the ResourceURI and wsman:SelectorSet should be the same whether a
wxf:Get, wxf:Delete, wxf:Put, or wxf:Create is being used. This is not a strict requirement,
but reduces the education and training required to construct and use tools.

It is clear that wxf:Create is a special case, in that the Selectors are often not known until
the resource is actually created. For example, while it may be possible to return running
process information using a hypothetical ProcessID as a Selector, it is typically not possible
to assert the ProcessID during the creation phase, so wxf:Create would not have the same
Selector values as the corresponding wxf:Get or wxf:Delete (which would presumably
terminate the process).

A good model to follow would be to use the same Selector values for wxf:Get, wxf:Put and
wxf:Delete when working with the same instance. wsen:Enumerate should use just the
ResourceURI in isolation with no Selectors, since it is going to return multiple instances, and
wxf:Create would either use no Selectors or special create-only Selectors.

This usage is not a strict requirement, just a guideline. The service may use distinct
Selectors for every operation and may require Selectors even for wsen:Enumerate.

 36

Throughout, it must be remembered that the s:Body of the messages must contain XML
with correct and valid XML namespaces referring to XML Schemas which can validate the
message. While most services and clients will not do real-time validation of messages in
production environments due to performance constraints, during debugging or other
systems verification, validation may be enabled, and such messages will be considered
invalid.

When performing WS-Transfer operations, side effects may occur. For example, deletion of
a particular resource via wxf:Delete may result in several other dependent instances
disappearing, and wxf:Create may result in the logical creation of more than one resource
which can be subsequently returned via a wxf:Get. Similarly, a wxf:Put may result in a
rename of the target instance, a rename of some unrelated instance, or the deletion of
some unrelated instance. These side-effects are service-specific and this specification
makes no statements about the taxonomy and semantics of objects over which these
operations apply.

4.4 WS-Transfer:Get
The wxf:Get is used to retrieve resource representations. The ResourceURI may map to a
complex XML Infoset (an "object"), or the ResourceURI may map to a single, simple value.
The nature and complexity of the representation is not constrained by this specification.

R4.4-1: A conformant service SHOULD support wxf:Get in order to service metadata
requests about the service itself or to verify the result of a previous action or
operation.

This statement does not constrain implementations from supplying additional similar
methods for resource and metadata retrieval.

R4.4-2 Execution of the wxf:Get SHOULD NOT in itself have side-effects on the
value of the resource.

R4.4-3: If an object cannot be retrieved, due to locking conditions, simultaneous
access, or similar conflicts, a wsman:Concurrency fault SHOULD be
returned.

In practice, wxf:Get is designed to return fragments or chunks of XML which correspond to
real-world objects. To retrieve individual property values, the client must either postprocess
the XML content for the desired value, or the service can support Fragment-level WS-
Transfer (4.9).

Fault usage is generally as described in chapters 2 and 3. Not being able to locate or access
the resource is equivalent to problems with the SOAP message, the ResourceURI, or
SelectorSet. There are no 'get-specific' faults.

4.5 WS-Transfer:Delete
The WS-Transfer:Delete is used to delete resources. In general, the addressing should be
the same as for a corresponding wxf:Get for uniformity, but this is not absolutely required.

R4.5-1: A conformant service is NOT REQUIRED to support wxf:Delete.

 37

R4.5-2: A conformant service SHOULD support wxf:Delete using the same
addressing (ResourceURI, Selectors, etc.) as a corresponding wxf:Get or
other messages, but this is NOT REQUIRED if the deletion mechanism for
a resource is semantically distinct.

R4.5-3: If deletion is supported and the corresponding resource can be retrieved
using wxf:Get, a conformant service SHOULD support deletion using
wxf:Delete. The service MAY additionally export a custom action for
deletion.

R4.5-4: If an object cannot be deleted, due to locking conditions, simultaneous
access, or similar conflicts, a wsman:Concurrency fault SHOULD be
returned.

In practice, wxf:Delete is designed to delete entire real-world objects. To delete individual
property values within an object which itself is not to be deleted, the client must either do a
wxf:Put with those properties removed, or the service can support Fragment-Level WS-
Transfer (4.9).

Fault usage is generally as described in chapters 2 and 3. Not being able to locate or access
the resource is equivalent to problems with the SOAP message, ResourceURI, or
SelectorSet. There are no 'delete-specific' faults.

4.6 WS-Transfer:Create
The WS-Transfer:Create is used to create resources; it models a logical "constructor". In
general, the addressing is not the same as that used for wxf:Get or wxf:Delete in that the
SelectorSet assigned to a newly created instance for subsequent access is not necessarily
part of the XML content used for creating the resource. Since the SelectorSet may often be
assigned by the service or one of its underlying systems, the CreateResponse must contain
the applicable SelectorSet of the newly created instance.

R4.6-1: A conformant service is NOT REQUIRED to support wxf:Create.

R4.6-2: A conformant service is NOT REQUIRED to support wxf:Create using the
same endpoint reference (ResourceURI, Selectors, etc.) as a
corresponding wxf:Get, wxf:Put or other messages for that resource.

R4.6-3: If a single resource can be created using a SOAP message and that
resource can be subsequently retrieved using wxf:Get, then a service
SHOULD support creation of the resource using wxf:Create. The service
MAY additionally export a custom method for instance creation.

R4.6-4: If the supplied Body does not have the correct content in order for the
resource to be created, the service SHOULD return a
wxf:InvalidRepresentation fault and detail codes of

a) wsman:faultDetail/InvalidValues if one or more values in the <Body> was not
correct

b) wsman:faultDetail/MissingValues if one or more values in the <Body> was
missing

c) wsman:faultDetail/InvalidNamespace if the wrong XML schema namespace
was used and is not recognized by the service

R4.6-5: A service MUST not use wxf:Create to perform an update on an existing

 38

representation. The targeted object must not already exist, or else the
service SHOULD return a wsman:AlreadyExists fault.

Note that there is no requirement that the message body for wxf:Create use the same
schema as that returned via a wxf:Get for the resource. Often, the values required to
create a resource are different from those retrieved using a wxf:Get or those used for
update using wxf:Put.

Note that WS-Transfer specifies that the wxf:CreateResponse must contain the initial
representation of the object. However, due to restrictions in WSDL 1.1 (and the upcoming
WSDL 2.0 specification), it is not possible to actually define a SOAP Body which contains
jutxaposed elements at the top level.

This specification places a restriction such that the only returned value is the
wxf:ResourceCreated element, which contains the endpoint reference of the newly created
resource.

If a service needs to support creation of individual values within a representation (fragment-
level creation, array insertion, etc.), then it should support Fragment-Level WS-Transfer
(4.9).

Since the values in the SelectorSet may be assigned by the service and may not be part of
the wxf:Create representation, they must be returned in the wxf:CreateResponse message
if they are required for subsequent access.

All applicable Selectors should be returned, even if not all of them are required for
subsequent access. Similarly, the ResourceURI used to create the object may not even be
the one used to retrieve it subsequently using wxf:Get.

R4.6-6: The wxf:CreateResponse to a wxf:Create message MUST contain the new
endpoint reference of the created resource in the wxf:ResourceCreated
element, including the applicable SelectorSet. The wsa:Address of that
resource SHOULD be simply copied from the wsa:To address of the
original request, suffixed with the ResourceURI. The anonymous address
from WS-Addressing MAY be used to communicate an address which is not
transport-specific.

R4.6-7: The response MUST NOT contain the initial representation of the object, in
spite of indications within the WS-Transfer specification.

Hypothetical example of a response for a newly created virtual drive:

(1) <s:Envelope
(2) xmlns:s="http://www.w3.org/2003/05/soap-envelope"
(3) xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"
(4) xmlns:wsman="http://schemas.xmlsoap.org/ws/2005/06/management"
(5) xmlns:wxf="http://schemas.xmlsoap.org/ws/2004/09/transfer">
(6) <s:Header>
(7) ...
(8) <wsa:Action>
(9) http://schemas.xmlsoap.org/ws/2004/09/transfer/CreateResponse
(10) </wsa:Action>

(11) ...

 39

(12) <s:Body>

(13) <wxf:ResourceCreated>

(14) <wsa:Address>

(15) http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous/

(16) </wsa:Address>

(17) <wsa:ReferenceParameters>

(18) <wsman:ResourceURI>wsman:samples.org/2005/02/virtualDrive</wsman:ResourceURI>

(19) <wsman:SelectorSet>

(20) <wsman:Selector Name="ID"> F: </wsman:Selector>

(21) </wsman:SelectorSet>

(22) </wsa:ReferenceParameters>

(23) </wxf:ResourceCreated>

(24) </s:Body>

(25)

Note that the response contains two sections, the wxf:ResourceCreated (lines 13-23) which
contains the new endpoint reference of the created resource, including its ResourceURI and
the correct SelectorSet. This is the address that would be used to retrieve the resource in a
subsequent wxf:Get operation.

Note that the service may use a network address which is the same as the <wsa:To>
address in the wxf:Create request, or may simply use the anonymous address as shown
(lines 15-16).

R4.6-8: The service MAY ignore any values in the initial representation which are
considered read-only from the point of view of the underlying 'real-world''
object.

This is to allow wxf:Get, wxf:Put and wxf:Create to share the same schema. Note that
wxf:Put also allows the service to ignore read-only properties during an update.

R4.6-9: If the success of an operation cannot be reported as described in this section
and cannot be reversed, a wsman:EncodingLimit fault with a detail code of
wsman:faultDetail/UnreportableSuccess SHOULD be returned.

4.7 WS-Transfer:Put
If a resource can be updated in its entirety within the constraints of the corresponding XML
schema for the resource, then wxf:Put should be supported by the service.

R4.7-1: A conformant service is NOT REQUIRED to support Wxf:Put.

R4.7-2: If a single management resource can be updated (within the constraints of its
schema) using a SOAP message and that resource can be subsequently
retrieved using wxf:Get, then a service SHOULD support update of the
resource using wxf:Put. The service MAY additionally export a custom
method for updates.

R4.7-3: If a single management resource contains a mix of read-only and read-write
values, the wxf:Put message MAY contain both the read-only and read-

 40

write values, subject to the legality of the XML content with regard to its
XML schema namespace. In such cases, the service SHOULD ignore the
read-only values during the update operation. If none of the values are
writeable, the service SHOULD return a wsa:ActionNotSupported fault.

Note that this typically happens if a wxf:Get is performed, a value is altered, and the entire
updated representation is sent using a wxf:Put. In this case, any read-only values will still
be present.

Note that there is a complication in that wxf:Put must contain the complete new
representation for the instance. If the resource schema requires the presence of any given
value (minOccurs is not zero), it must be supplied as part of the wxf:Put message, even if it
is not being altered from its original value.

If the schema is defined with default values for elements which are optional (minOccurs=0),
then the wxf:Put message may omit these values and rely on the defaults being observed
during the update.

In short, the Body of the wxf:Put message must not violate the constraints of the associated
XML schema. For example, if a wxf:Get would return

(1) <s:Body>
(2) <MyObject xmlns="examples.org/2005/02/MySchema">
(3) <A> 100
(4) 200
(5) <C> 100 </C>
(6) </MyObject>
(7) </s:Body>

And the corresponding XML schema defined A, B, and C as minOccurs="1",

(8) <xs:elemente name="MyObjecct">
(9) <xs:complexType>
(10) <xs:sequence>

(11) <xs:element name="A" type="xs:int" minOccurs="1" maxOccurs="1"/>

(12) <xs:element name="B" type="xs:int" minOccurs="1" maxOccurs="1"/>

(13) <xs:element name="C" type="xs:int" minOccurs="1" maxOccurs="1"/>

(14) ...

...then the corresponding wxf:Put must have all three elements, since the schema mandates
that all three be present. Even if the only value being updated is , the client would
have to supply all three values. This usually means that the client would have to issue a
wxf:Get first, in order to preserve the current values of <A> and <C>, change to the
desired value, and then write the object using wxf:Put. As noted in R4.7-3, the service
should ignore attempts to update values which are read-only with regard to the underlying
real-world object.

To update isolated values without having to supply values which are not being changed, use
the fragment-level transfer mechanism in 4.9.

R4.7-4: A conformant service SHOULD support wxf:Put using the same endpoint
reference (ResourceURI, Selectors, etc.) as a corresponding wxf:Get or
other messages, but this is NOT REQUIRED if the Put mechanism for a
resource is semantically distinct.

 41

R4.7-5: If the supplied Body does not have the correct content in order for the
resource to be updated, the service SHOULD return a
wxf:InvalidRepresentation fault and detail codes of

a) wsman:faultDetail/InvalidValues if one or more values in the s:Body was not
correct

b) wsman:faultDetail/MissingValues if one or more values in the s:Body was
missing

c) wsman:faultDetail/InvalidNamespace if the wrong XML schema namespace
was used and is not recognized by the service

R4.7-7: If an object cannot be updated, due to locking conditions, simultaneous
access, or similar conflicts, a wsman:Concurrency fault SHOULD be
returned.

R4.7-8: A wxf:Put operation MAY result in a change to the endpoint reference
(ResourceURI and Selectors) for the resource, since the values being
updated may in turn cause an identity change.

Since WS-Management services typically delegate the wxf:Put to underlying subsystems, it
is not always practical for the service to be aware of an identity change. It is recommended
that wsman:Rename be supported wherever possible to make it clear to the client that a
rename (an EPR change) is in fact occurring.

R4.7-9: It is RECOMMENDED that the service return the new representation in all
cases. It is often difficult to know whether the new representation is
different than the requested update. This is because resource-constrained
implementations may not have sufficient resources to determine the
equivalence of the requested update from the result.

The implication of this rule is that if the new representation is not returned, it must have
precisely matched what was submitted in the wxf:Put message. Since implementations can
rarely assure this, it is best to always return the new representation.

R4.7-10: If the success of an operation cannot be reported as described in this
section due to encoding limits or othe reasons and it cannot be reversed, a
wsman:EncodingLimit fault with a detail code of
wsman:faultDetail/UnreportableSuccess SHOULD be returned.

4.8 WS-Management:Rename
Renaming a resource is a common operation.

The wxf:Put operation should not be used to indirectly effect a rename for two reasons: (a)
renaming is a serious operation and users may not be aware that changing some values in a
wxf:Put actually constitutes a rename, (b) the name or identity of a resource may not be
part of its representation, so there is no way to specify the new name in the wxf:Put body.

In WS-Management, renaming is limited to reassigning the wsman:SelectorSet values for
the resource.

R4.8-1: A conformant service is NOT REQUIRED to support wsman:Rename.

 42

R4.8-2 If a service implements wsman:Rename, it MUST implement the following
message and its associated response and the rename SHOULD NOT have
any side-effect on the representation other than the effects of the rename
itself. The rename may logically constitute a "move" as well as a rename,
depending on the requirements of the service.

The ResourceURI cannot be changed, only the wsman:SelectorSet values. Likewise,
singleton resources with no wsman:SelectorSet cannot be renamed.

Note that the rename operation references the 'old' identity of the object in the same
manner as wxf:Get, but the new identity of the resource is in the s:Body of the message,
using a wsman:Rename block:

(1) <s:Envelope ...>
(2) <s:Header>
(3) <wsa:To> networkAddress </wsa:To>
(4) <wsa:Action s:mustUnderstand="true">
(5) http://schemas.xmlsoap.org/ws/2005/06/management/Rename
(6) </wsa:Action>
(7) <wsman:ResourceURI>ResourceURI</wsman:ResourceURI>
(8) <wsman:SelectorSet> ... </wsman:SelectorSet>
(9) </s:Header>
(10) <s:Body>

(11) <wsman:Rename>

(12) new endpoint-reference

(13) </wsman:Rename>

(14) </s:Body>

(15) </s:Envelope>

The following describes additional, normative constraints on the outline listed above:

wsa:Action
MUST be http://schemas.xmlsoap.org/ws/2005/06/management/Rename.

wsman:Rename
This s:Body element wraps the new identity of the resource and is of type
wsa:EndpointReference. This contains the original wsa:To value used to address the
item, and the new wsman:SelectorSet which applies.

R4.8-3 A conformant service which implements wsman:Rename MUST accept an
EPR in the wsman:Rename block which uses a wsa:To address with the
anonymous endpoint address:

 http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous

 ...suffixed with the ResourceURI.

 The service MUST alternately accept an address which matches the
wsa:To address of the request itself, but should reject any wsa:To which is
not one of these two possibilities with a wsman:RenameFailure fault with a
detail code of wsman:faultDetail/InvalidAddress.

R4.8-4 A conformant service which implements wsman:Rename MAY allow any or
all of the wsman:Selector values to change during the rename. The other
EPR values MUST not be changed (i.e., wsa:To).

R4.8-5 In addition to faults related to EPR usage in finding and locating the resource

 43

to be renamed, the service SHOULD return a wsman:RenameFailure fault
using one of the following detail codes if possible:

a) wsman:faultDetail/InvalidSelectorAssignment if the new Selectors cannot
be applied to rename the resource.

b) wsman:faultDetail/InvalidResourceURI if the ResourceURI was not
correct.

c) wsman:faultDetail/AlreadyExists if the resource under the requested EPR
naming already exists.

This mechanism is designed to be forward-compatible with allowing other aspects of the
EPR to be renamed in a future version of this specificaiton. For this version, however, only
the Selector values may be legally changed.

The response to a wsman:Rename is a wsman:RenameResponse, which contains the new
EPR of the resource.

The format of the response is as follows:

(26) <s:Envelope

(27) <s:Header>

(28) ...

(29) <wsa:Action s:mustUnderstand="true">

(30) http://schemas.xmlsoap.org/ws/2005/06/management/RenameResponse

(31) </wsa:Action>

(32) ...

(33) <s:Body>

(34) <wsman:RenamedTo>

(35) endpoint reference

(36) </wsman:RenamedTo>

(37) </s:Body>

(38) </s:Envelope>

The following describes additional, normative constraints on the outline listed above:

wsa:Action
MUST be "http://schemas.xmlsoap.org/ws/2005/06/management/RenameResponse.

wsman:RenamedTo
Must contain the resultant endpoint reference for the resource: the wsa:To, the
wsman:ResourceURI, and any applicable wsman:SelectorSet values. In practice, only
the Selector values change, although it is convenient to have the full EPR represented
for easy composition with subsequent operations.

R4.8-6 A conformant service MUST return the full, new endpoint reference in all
cases, regardless of which Selector elements of the EPR changed. The
wsa:To address SHOULD be the same as the wsa:To address which would
be used to subsequently execute a wxf:Get against the resource, but MAY
consist of the anonymous address
 http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous
suffixed by the ResourceURI.

There is no implication that the rename takes immediate effect. Services typically will hold

 44

off the response until the rename is completed, but this is not a strict requirement.

The following are hypothetical examples of a Rename and RenameResponse in which a disk
drive is renamed from C: to D: :

(1) <s:Envelope
(2) xmlns:s="http://www.w3.org/2003/05/soap-envelope"
(3) xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"
(4) xmlns:wsman="http://schemas.xmlsoap.org/ws/2005/06/management">
(5) <s:Header>
(6) <wsa:To>
(7) http://1.2.3.4/wsman/
(8) </wsa:To>
(9) <wsa:ReplyTo>
(10) <wsa:Address> http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous

(11) </wsa:Address>

(12) </wsa:ReplyTo>

(13) <wsman:ResourceURI>wsman:samples.org/2005/02/LogicalDisk</wsman:ResourceURI>

(14) <wsa:Action>

(15) http://schemas.xmlsoap.org/ws/2005/06/management/Rename

(16) </wsa:Action>

(17) <wsa:MessageID>

(18) uuid:d9726315-bc91-430b-9ed8-ce5ffb858a87

(19) </wsa:MessageID>

(20) <wsman:SelectorSet>

(21) <wsman:Selector Name="Drive"> C: </wsman:Selector>

(22) </wsman:SelectorSet>

(23) </s:Header

(24) <s:Body>

(25) <wsman:Rename>

(26) <wsa:EndpointReference>

(27) <wsa:Address>

(28) http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous

(29) </wsa:Address>

(30) <wsa:ReferenceParameters>

(31) <wsman:ResourceURI>wsman:samples.org/2005/02/LogicalDisk</wsman:ResourceURI>

(32) <wsman:SelectorSet>

(33) <wsman:Selector Name="Drive"> D: </wsman:Selector>

(34) </wsman:SelectorSet>

(35) </wsa:ReferenceParameters>

(36) </wsa:EndpointReference>

(37) </wsman:Rename>

(38) </s:Body>

(39) </s:Envelope>

Note that the address of the item to be renamed follows the normal pattern in the header.
Only the <Body> is different in that the new name is specified. Only the parts of the EPR
that need to be changed are present, the wsman:SelectorSet in this case.

Note the use of the special wsa:Address value of
http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous

 45

...to act as a placeholder for the real address, suffixed by the ResourceURI. The actual
transport address could also legally be used.

In this example, only the Selector indicating the drive letter is changed from the "C:"
indicated by the the new value on line 31.

The response indicates the new EPR:

(40) <s:Envelope

(41) xmlns:s="http://www.w3.org/2003/05/soap-envelope"

(42) xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"

(43) xmlns:wsman="http://schemas.xmlsoap.org/ws/2005/06/management">

(44) <s:Header>

(45) <wsa:To>

(46) http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous

(47) </wsa:To>

(48) <wsa:Action s:mustUnderstand="true">

(49) http://schemas.xmlsoap.org/ws/2005/06/management/RenameResponse

(50) </wsa:Action>

(51) <wsa:MessageID s:mustUnderstand="true">

(52) uuid:d9726315-bc91-430b-9ed8-ce5ffb858a88

(53) </wsa:MessageID>

(54) <wsa:RelatesTo>

(55) uuid:d9726315-bc91-430b-9ed8-ce5ffb858a87

(56) </wsa:RelatesTo>

(57) </s:Header>

(58) <s:Body>

(59) <wsman:RenamedTo>

(60) <wsa:EndpointReference>

(61) <wsa:Address>

(62) http://1.2.3.4/wsman

(63) </wsa:Address>

(64) <wsman:ResourceURI>wsman:samples.org/2005/02/LogicalDisk</wsman:ResourceURI>

(65) <wsman:SelectorSet>

(66) <wsman:Selector Name="Drive"> D: </wsman:Selector>

(67) </wsman:SelectorSet>

(68) </wsa:EndpointReference>

(69) </wsman:RenamedTo>

(70) </s:Body>

(71) </s:Envelope>

Note that the response contains the new EPR in its entirety, ready to use in a new wxf:Get
(after the required transformation discussed in 2.2). Note specifically that the ResourceURI
is added back into the new EPR (line 59) even though it was not part of the rename, and
the wsa:Address is the actual address that the client would use to retrieve the resource, not
the "anonymous" role URI.

4.9 Fragment-Level WS-Transfer
Because WS-Transfer works with entire instances and it may be inconvenient to specify
hundreds or thousands of EPRs just to model fragment-level access with full EPRs, WS-

 46

Management supports the concept of fragment-level (property) access of resources that are
normally accessed via WS-Transfer operations. This is done using special usage of WS-
Transfer.

Because of the XML schema limitations discussed in 4.7, it is often incorrect to simply return
a subset of the XML defined for the object being accessed, as a subset may violate the XML
schema for that fragment. In order to support transfer of fragments or individual elements
of a representation object, several modifications to the basic WS-Transfer operations are
made.

R4.9-1 A conformant service is NOT REQUIRED to support fragment-level WS-
Transfer. The service MUST NOT behave as if normal WS-Transfer
operations were in place, but MUST operate exclusively on the fragments
specified. If the service does not support fragment-level access, it MUST
return a wsman:UnsupportedFeature fault with a detail code of
wsman:faultDetail/FragmentLevelAccess.

R4.9-2 A conformant service which supports fragment-level WS-Transfer MUST
accept the following SOAP header in all requests and include it in all
responses which transport the fragments:

(1) <wsman:FragmentTransfer s:mustUnderstand="true">
(2) xpath to fragment
(3) </wsman:FragmentTransfer>

 This header may only appear once and mustUnderstand MUST be set to
true, as a special XML usage is in progress. In this manner, both the
service and the client can be certain that a special mode of transfer is in
progress. The default value of this header is the XPath 1.0 Selector of the
fragment being tranferred (using http://www.w3.org/TR/1999/REC-xpath-
19991116), with relation to the full representation of the object. If a value
other than XPath 1.0 is being used, a Dialect attribute MUST be added to
indicate this:

(4) <wsman:FragmentTransfer s:mustUnderstand="true"
(5) Dialect="URIToNewSelectorDialect">
(6) dialect text
(7) </wsman:FragmentTransfer>

Note that XPath is special-cased due to its importance, but it is not mandated. Any other
type of language to describe fragment-level access is permitted as long as the Dialect value
is set to indicate to the service what dialect is being used.

R4.9-3 For WS-Transfer operations, the Dialect used is XPath 1.0
(http://www.w3.org/TR/1999/REC-xpath-19991116), then the following
rules hold when interpreting the XPath:

Value of /s:Header/wsman:FragmentTransfer is an XPath [XPath 1.0] predicate
expression (PredicateExpr); the context of the expression is:

(a) Context Node: The body of the XML element that would be returned as a direct
child s:Body if fragment transfer were not in use.

(b) Context Position: 1.

 47

(c) Context Size: 1.

(d) Variable Bindings: None.

(e) Function Libraries: Core Function Library [XPath 1.0].

(f) Namespace Declarations: The [in-scope namespaces] property [XML Infoset] of
the first child of /s:Envelope/s:Body.

This is nothing more than stating that the XPath is to be interpreted relative to XML of the
returned object and not over any of the SOAP content.

For WS-Enumeration, the XPath is interpreted as defined in the WS-Enumeration
specification, although the output is subsequently wrapped in wsman:XmlFragment
wrappers once the XPath is evaluated.

Note that an XPath value may refer to the entire node, so the concept of a fragment can
include the entire object. Fragment-level WS-Transfer is thus a proper superset of normal
WS-Transfer.

If full XPath cannot be supported, a common subset for this purpose is described in Chapter
12 of this specification. However, in such cases the Dialect value is still that of XPath.

R4.9-4 All transfer in either direction of the XML fragments must be wrapped with a
<wsman:XmlFragment> wrapper which contains a definition which
suppresses validation and allows any content to pass. A service MUST
reject any attempt to use wsman:FragmentTransfer unless the s:Body
wraps the content using a wsman:XmlFragment wrapper. If any other
usage is encountered, the service MUST fault the request using a
wxf:InvalidRepresentation fault with a detail code of
wsman:faultDetail/InvalidFragment.

Fragment transfer may occur at any level, single element, complex elements, simple values,
and attributes. In practice, services will only typically support value-level access to
elements:

R4.9-5 If fragment-level WS-Transfer is suported, a conformant service SHOULD at
least support leaf-node value-level access using an XPath with a /Text()
specifier. In this case, the value is not wrapped with XML, but is transferred
directly as text within the wsman:XmlFragment wrapper.

In essence, the content which is transferred is whatever an XPath operation over the full
XML would produce.

R4.9-6 For all fragment-level operations, partial successes are NOT permitted. The
entire meaning of the XPath or other dialect MUST be fully observed by the
service in all operations and the entire fragment that is specified MUST be
successfully transferred in either direction. Otherwise, faults occur as if
none of the operation had succeeded.

All faults are as for normal, "full" WS-Transfer operations.

The following sections show how the underlying WS-Transfer operations change when
transferring XML fragments.

 48

4.10 Fragment-Level WS-Transfer:Get
Fragment-level gets are as for full wxf:Get, except for the wsman:FragmentTransfer header
(line 24). This example is drawn from the example in 4.2:

(1) <s:Envelope
(2) xmlns:s="http://www.w3.org/2003/05/soap-envelope"
(3) xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"
(4) xmlns:wsman="http://schemas.xmlsoap.org/ws/2005/06/management">
(5) <s:Header>
(6) <wsa:To>
(7) http://1.2.3.4/wsman
(8) </wsa:To>
(9) <wsman:ResourceURI>wsman:samples.org/2005/02/physicalDisk</wsman:ResourceURI>
(10) <wsa:ReplyTo>

(11) <wsa:Address>

(12) http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous

(13) </wsa:Address>

(14) </wsa:ReplyTo>

(15) <wsa:Action>

(16) http://schemas.xmlsoap.org/ws/2004/09/transfer/Get

(17) </wsa:Action>

(18) <wsa:MessageID>

(19) uuid:d9726315-bc91-430b-9ed8-ce5ffb858a87

(20) </wsa:MessageID>

(21) <wsman:SelectorSet>

(22) <wsman:Selector Name="LUN"> 2 </wsman:Selector>

(23) </wsman:SelectorSet>

(24) <wsman:OperationTimeout> PT30S </wsman:OperationTimeout>

(25) <wsman:FragmentTransfer s:mustUnderstand="true">

(26) PhysicalDisk/Manufacturer

(27) </wsman:FragmentTransfer>

(28) </s:Header>

(29) <s:Body/>

(30) </s:Envelope>

In this case, the service will execute the specified XPath against the representation that
would normally have been retrieved, and then return a fragment instead.

Note that the wsman:FragmentTransfer MUST be repeated in the wxf:GetResponse (line
47-49) by the service to reference the fragment and to signal that a fragment has been
transferred, and that the response is wrapped in a wsman:XmlFragment wrapper, which
suppresses the schema validation which would otherwise apply:

(39) <s:Envelope

(40) xmlns:s="http://www.w3.org/2003/05/soap-envelope"

(41) xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"

(42) xmlns:wsman="http://schemas.xmlsoap.org/ws/2005/06/management">

(43) <s:Header>

(44) <wsa:To>

(45) http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous

 49

(46) </wsa:To>

(47) <wsa:Action s:mustUnderstand="true">

(48) http://schemas.xmlsoap.org/ws/2004/09/transfer/GetResponse

(49) </wsa:Action>

(50) <wsa:MessageID s:mustUnderstand="true">

(51) uuid:d9726315-bc91-430b-9ed8-ce5ffb858a88

(52) </wsa:MessageID>

(53) <wsa:RelatesTo>

(54) uuid:d9726315-bc91-430b-9ed8-ce5ffb858a87

(55) </wsa:RelatesTo>

(56) <wsman:FragmentTransfer s:mustUnderstand="true">

(57) PhysicalDisk/Manufacturer

(58) </wsman:FragmentTransfer>

(59) </s:Header>

(60) <s:Body>

(61) <wsman:XmlFragment>

(62) <Manufacturer> Acme, Inc. </Manufacturer>

(63) </wsman:XmlFragment>

(64) </s:Body>

(65) </s:Envelope>

The output (lines 52-54) is that that would be supplied by a typical XPath processor and
may or may not contain XML namespace information or attributes.

If the client wishes to recieve the value in isolation without an XML wrapper, XPath
techniques, such as using the Text() operator can be used to retrieve just the values. The
following request

(66) <wsman:FragmentTransfer s:mustUnderstand="true">

(67) PhysicalDisk/Manufacturer/Text()

(68) </wsman:FragmentTransfer>

...which will yield this XML:

(69) <wsman:XmlFragment>

(70) Acme, Inc.

(71) </wsman:XmlFragment>

4.11 Fragment-Level WS-Transfer:Put
Fragment-level WS-Transfer:Put works just like regular wxf:Put except that only the part
that is being updated is transferred. While the fragment may be considered part of an
instance from the observer's perspective, the fragment that is referenced is treated as the
"instance" during the execution of the operation.

It is important to note that wxf:Put is always an update operation of an existing element,
whether a simple element or an array. To create or insert new elements, wxf:Create is
required.

Using the following XML for illustrative purposes:

(1) <a>
(2)

 50

(3) <c> </c>
(4) <d> </d>
(5)
(6) <e>
(7) <f> </f>
(8) <g> </g>
(9) </e>
(10)

Even though <a> may be the instance of the resource, if the operation references the a/b
node during the wxf:Put, then all of the content of is updated, that is, <c> and <d>
are both updated to the new representation. If the client wants to only update <d>, then
the referenced fragment must be a/b/d.

Continuing from the example in 4.2 and 4.10, if the client wanted to update the
<BootPartition> value from 0 to 1, then the following wxf:Put fragment could be sent to the
service:

(11) <s:Envelope

(12) xmlns:s="http://www.w3.org/2003/05/soap-envelope"

(13) xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"

(14) xmlns:wsman="http://schemas.xmlsoap.org/ws/2005/06/management">

(15) <s:Header>

(16) <wsa:To>

(17) http://1.2.3.4/wsman

(18) </wsa:To>

(19) <wsman:ResourceURI>wsman:samples.org/2005/02/physicalDisk</wsman:ResourceURI>

(20) <wsa:ReplyTo>

(21) <wsa:Address>

(22) http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous

(23) </wsa:Address>

(24) </wsa:ReplyTo>

(25) <wsa:Action>

(26) http://schemas.xmlsoap.org/ws/2004/09/transfer/Put

(27) </wsa:Action>

(28) <wsa:MessageID>

(29) uuid:d9726315-bc91-430b-9ed8-ce5ffb858a87

(30) </wsa:MessageID>

(31) <wsman:SelectorSet>

(32) <wsman:Selector Name="LUN"> 2 </wsman:Selector>

(33) </wsman:SelectorSet>

(34) <wsman:OperationTimeout> PT30S </wsman:OperationTimeout>

(35) <wsman:FragmentTransfer s:mustUnderstand="true">

(36) PhysicalDisk/BootPartition

(37) </wsman:FragmentTransfer>

(38) </s:Header>

(39) <s:Body>

(40) <wsman:XmlFragment>

(41) <BootPartition> 1 </BootPartition>

(42) </wsman:XmlFragment>

(43) </s:Body>

 51

(44) </s:Envelope>

(45)

Note that the <BootPartition> wrapper is present because the XPath value specifies this. If
PhysicalDisk/BootPartition/Text() were used, then the Body could contain just the value:

(46) ...

(47) <wsman:FragmentTransfer s:mustUnderstand="true">

(48) PhysicalDisk/BootPartition/Text()

(49) </wsman:FragmentTransfer>

(50) </s:Header>

(51) <s:Body>

(52) <wsman:XmlFragment>

(53) 1

(54) </wsman:XmlFragment>

(55) </s:Body>

If the corresponding update occurs, the new representation matches, so no s:Body result is
expected, although it is legal to always return it. If a value does not match what was
requested, the service only needs to supply the parts that are different than what is
requested. This would generally not occur for single values, since a failure to honor the new
value would simply result in a wxf:InvalidRepresentation fault.

A sample reply:

(56) <s:Envelope

(57) xmlns:s="http://www.w3.org/2003/05/soap-envelope"

(58) xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"

(59) xmlns:wsman="http://schemas.xmlsoap.org/ws/2005/06/management">

(60) <s:Header>

(61) <wsa:To>

(62) http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous

(63) </wsa:To>

(64) <wsa:Action s:mustUnderstand="true">

(65) http://schemas.xmlsoap.org/ws/2004/09/transfer/PutResponse

(66) </wsa:Action>

(67) <wsa:MessageID s:mustUnderstand="true">

(68) uuid:d9726315-bc91-430b-9ed8-ce5ffb858a88

(69) </wsa:MessageID>

(70) <wsa:RelatesTo>

(71) uuid:d9726315-bc91-430b-9ed8-ce5ffb858a87

(72) </wsa:RelatesTo>

(73) <wsman:FragmentTransfer s:mustUnderstand="true">

(74) PhysicalDisk/BootPartition/Text()

(75) </wsman:FragmentTransfer>

(76) </s:Header>

(77) <s:Body>

(78) <wsman:XmlFragment>

(79) 1

(80) </wsman:XmlFragment>

(81) </s:Body>

(82) </s:Envelope>

 52

R4.11-1 As for normal wxf:Put, the service MAY ignore any read-only values
supplied as part of the fragment for update.

R4.11-2 If the service encounters an attempt to update a read-only value, a
wsman:ActionNotSupported fault is returned with a detail code of
wsman:faultDetail/ReadOnly

Note that fragment-level Put implies replacement or update and does not insert new values
into the representation object. Thus, it is not appropriate to use wxf:Put to insert a new
value at the end of an array, for example. The entire array can be returned and the
updated and replaced (since it is therefore an update of the entire array), but a single
operation to insert a new element in the middle or at the end of an array is actually a
wxf:Create.

WS-Transfer states that if the new representation differs from the input, then it should be
returned in the response. With fragment-level wxf:Put, this only applies to the portion of
the representation object being written, not the entire object. If a single value is written
and it accepted, but has side-effects on other values in the representation, the entire object
is not returned.

To set a value to NULL without removing it as an element, use an attribute value of xsi:nil
on the element that is being set to NULL, ensuring that the fragment path is adjusted
appropriately:

(72) <wsman:FragmentTransfer s:mustUnderstand="true">

(73) PhysicalDisk/AssetLabel

(74) </wsman:FragmentTransfer>

(75) <s:Body>

(76) <wsman:XmlFragment xmlns:xsi="www.w3.org/2001/XMLSchema-instance">

(77) <AssetLabel xsi:nil="true"/>

(78) </wsman:XmlFragment>

(79) </s:Body>

4.12 Fragment-Level WS-Transfer:Create
Use of wxf:Create for fragments only applies if the XML schema for the targeted object
supports optional elements which are not currently present, or arrays with varying numbers
of elements and the client wishes to insert an element in an array (a repeated element). If
entire array replacement is needed, then Fragment-level wxf:Put should be used to replace
the entire array. For array access, the XPath array access notation (the [] operators) can
be conveniently used. Note that wxf:Create may only be used to add new content, but
cannot update existing content.

To insert a value which may be legally added (according to the rules of the schema for the
object), the wsman:FragmentTransfer identifies the path of the item to be added:

(1) <wsman:FragmentTransfer s:mustUnderstand="true">
(2) LogicalDisk/VolumeLabel
(3) </wsman:FragmentTransfer>

 53

In this case, the <Body> contains both the element and the value:

(4) <s:Body>
(5) <wsman:XmlFragment>
(6) <VolumeLabel> MyDisk </VolumeLabel>
(7) </wsman:XmlFragment>
(8) </s:Body>
(9) </s:Envelope>

This would presumably result in the creation of <VolumeLabel> element where none existed
before.

To create the target using value alone, the XPath Text() operator can be applied to the
path:

(10) <wsman:FragmentTransfer s:mustUnderstand="true">

(11) LogicalDisk/VolumeLabel/Text()

(12) </wsman:FragmentTransfer>

The body of the wxf:Create contains the value to be insert and is the same as for fragment-
level wxf:Put:

(13) <s:Body>

(14) <wsman:XmlFragment>

(15) MyDisk

(16) </wsman:XmlFragment>

(17) </s:Body>

(18) </s:Envelope>

To create an array element in the target, the XPath "[]" operator may be used. To insert a
new element at the end of the array, the user must know the number of elements in the
array so that the new index can be used.

(19) <wsman:FragmentTransfer s:mustUnderstand="true">

(20) InternetServer/BlockedIPAddress[3]

(21) </wsman:FragmentTransfer>

Insertion of a new element within the array is done using the index of the desired location,
and the array expands at that location to accommodate the new element. Note that using
wxf:Put at this location overwrites the existing array element, whereas wxf:Create inserts a
new element, making the array larger.

The body of the wxf:Create contains the value to be insert and is the same as for fragment-
level wxf:Put:

(22) <s:Body>

(23) <wsman:XmlFragment>

(24) <BlockedIPAddress> 123.12.188.44 </BlockedIPAddress>

(25) </wsman:XmlFragment>

(26) </s:Body>

 54

(27) </s:Envelope>

This will presumably result in a third IP address being added to the <BlockedIPAddress>
array (a repeated element), assuming there are only two elements at that level already.

R4.12-1: A service MUST not use wxf:Create to perform an update on an existing
representation. The targeted object must not already exist, or else the
service SHOULD return a wsman:AlreadyExists fault.

R4.12-2: If the wxf:Create fails because the result would not conform to the schema
in some way, a wxf:InvalidRepresentation fault is returned.

As defined in 4.6, the wxf:CreateResponse contains the EPR of the created resource. In the
case of fragment-level Create, the response additionally contains the
wsman:FragmentTransfer block including the path (line 12) in a SOAP header. Note that the
wxf:ResourceCreated EPR continues to refer to the entire object, not just the fragment:

(80) <s:Envelope

(28) xmlns:s="http://www.w3.org/2003/05/soap-envelope"

(29) xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"

(30) xmlns:wsman="http://schemas.xmlsoap.org/ws/2005/06/management"

(31) xmlns:wxf="http://schemas.xmlsoap.org/ws/2004/09/transfer">

(32) <s:Header>

(33) ...

(34) <wsa:Action>

(35) http://schemas.xmlsoap.org/ws/2004/09/transfer/CreateResponse

(36) </wsa:Action>

(37) ...

(38) <wsman:FragmentTransfer s:mustUnderstand="true">

(39) Path To Fragment

(40) </wsman:FragmentTransfer>

(41)

(42) <s:Body>

(43) <wxf:ResourceCreated>

(44) <wsa:Address> ... </wsa:Address>

(45) <wsa:ReferenceParameters>

(46) <wsman:SelectorSet>

(47) <wsman:Selector ...> </wsman:Selector>

(48) </wsman:SelectorSet>

(49) </wsa:ReferenceParameters>

(50) </wxf:ResourceCreated>

(51) </s:Body>

As discussed in 4.6, only the EPR of the item is returned in the SOAP Body in order to
remain compatible with WSDL, in spite of other options discussed in the WS-Transfer
specification.

 55

4.13 Fragment-Level WS-Transfer:Delete
Use of wxf:Delete for fragments only applies if the XML schema for the targeted object
supports optional elements which may be removed from the representation object, or arrays
(repeated elements) with varying numbers of elements and the client wishes to remove an
element in an array. If entire array replacement is needed, then Fragment-level Put should
be used to replace the entire array. For array access, the XPath array access notation can
be conveniently used.

To Delete a value which may be legally removed (according to the rules of the schema for
the object, the wsman:FragmentTransfer identifies the path of the item to be removed:

(1) <wsman:FragmentTransfer s:mustUnderstand="true">
(81) LogicalDisk/VolumeLabel

(82) </wsman:FragmentTransfer>

To set a value to NULL without removing it as an element, use Fragment-level wxf:Put using
a value of xsi:nil.

To delete an array element, the XPath [] operators may be used. The following example
deletes the third <User> element in the representation:

(2) <wsman:FragmentTransfer s:mustUnderstand="true">
(3) LogicalDisk/User[3]
(4) </wsman:FragmentTransfer>

Note that the <Body> is empty for all wxf:Delete operations, even with fragment-level
access, and all normal faults for wxf:Delete apply.

R4.13-1: If a value cannot be deleted, due to locking conditions or similar
phenomena, a wsman:AccessDenied fault SHOULD be returned.

5.0 WS-Enumeration

5.1 Introduction
If a multi-instanced resource provides a mechanism for enumerating or querying the set of
instances, then WS-Enumeration is used to perform the iteration.

R5.1-1: A service is NOT REQUIRED to support WS-Enumeration if enumeration of
any kind is not supported.

R5.1-2: If simple unfiltered enumeration of the instances of a resource is exposed via
Web services, a conformant service MUST support WS-Enumeration to
expose this. The service MAY also support other techniques for
enumerating the instances.

R5.1-3: If filtered enumeration (queries) of the instances of a resource is exposed via
Web services, a conformant service SHOULD support WS-Enumeration to
expose this. The service MAY also support other techniques for

 56

enumerating the instances.

The WS-Enumeration specification indicates that enumeration is a three-part operation: An
initial wsen:Enumerate is issued to establish the enumeration context and wsen:Pull
operations are used to iterate over the result set. When the enumeration iterator is no
longer required and not yet exhausted, a wsen:Release is issued to release the enumerator
and associated resources. As with other WS-Management methods, the enumeration may
make use of wsman:OptionSet, and may make use of wsman:SelectorSet to scope the
operation, although typically the ResourceURI is used alone without Selectors.

R5.1-4: A service is NOT REQUIRED to implement any of the following messages
from WS-Enumeration and implementing them is NOT RECOMMENDED:
Renew, GetStatus, or EnumerationEnd or any associated responses.
Since these messages are OPTIONAL, it is RECOMMENDED that the
service fault both Renew and GetStatus requests with a
wsa:ActionNotSupported fault.

R5.1-5: If a service is exposing enumeration, it MUST at least support the following
messages: wsen:Enumerate, wsen:Pull, and wsen:Release, and their
associated responses.

If the service does not support stateful enumerators, the Release may be a simple no-op in
reality so it is trivial to implement (it always succeeds when a valid operation). But it must
be supported in any case to allow for the uniform construction of clients.

R5.1-6: The wsen:Pull and wsen:Release operations are considered a continuation of
the original wsen:Enumerate. The service SHOULD enforce that the same
authentication and authorization is in force throughout the entire sequence
of operations and SHOULD fault any attempt to change credentials during
the sequence.

Note that some transports like HTTP may drop or reestablish connections between the
wsen:Enumerate and subsequence wsen:Pull operations, or between wsen:Pull operations.
It is expected that services will allow the enumeration to continue uninterrupted, but for
practical reasons some services may require that the same connection be used. This
specification establishes no requirements in this regard. However, R5.1-6 establishes that
the user credentials may not change during the entire enumeration sequence.

5.2 WS-Enumeration:Enumerate

R5.2-1: A conformant service is NOT REQUIRED to accept a wsen:Enumerate
message with an EndTo address, as implied by R5.1-4 and may issue a
wsman:UnsupportedFeature fault with a detail code of
wsman:faultDetail/AddressingMode.

R5.2-2: A conformant service MUST accept a wsen:Enumerate message with an

 57

Expires timeout, but MAY always fault with wsman:UnsupportedFeature
and a detail code of wsman:faultDetail/ExpirationTime.

R5.2-3: The Filter element in the wsen:Enumerate body MUST be either simple text
or a single complex XML element. A conformant service MUST NOT
accept mixed content of both text and elements, or multiple peer XML
elements under the Filter element.

While this use of mixed content is allowed in the general case of WS-Enumeration, it is
unnecessarily complex for WS-Management implementations.

A common filter dialect is http://www.w3.org/TR/1999/REC-xpath-19991116, which
is XPath 1.0. Resource constrained implementations may find it difficult to export full XPath
processing and yet still wish to use a subset of XPath syntax. As long as the filter
expression is a proper subset of the specified dialect, it is legal and may be described using
that Dialect value

There is no rule that mandates the use of XPath or any subset as a filtering dialect. Note
that if no Dialect is specified, the default interpretation is that the Filter value is in fact
XPath (as specified in WS-Enumeration).

R5.2-4: A conformant service is NOT REQUIRED to support the entire syntax and
processing power of the specified Filter Dialect. The only requirement is
that the specified Filter is syntactically correct within the definition of the
Dialect. Subsets are therefore legal. If the specified filter exceeds the
capability of the service, a wsen:CannotProcessFilter fault SHOULD be
returned with some text indication as to what went wrong.

Some services REQUIRE filters to function, as their search space is so large that simple
enumeration is meaningless or impossible.

R5.2-4: A conformant service MUST fault any request without a wsen:Filter if a
wsen:Filter is actually required, using a wsman:UnsupportedFeature fault,
with a detail code of wsman:faultDetail/FilteringRequired.

R5.2-5: A conformant service MAY block, fault (using wsman:Concurrency faults), or
allow other concurrent operations on the resource for the duration of the
enumeration, and MAY include or exclude the results of such operations as
part of any enumeration still in progress.

If clients execute other operations, such as wxf:Create or wxf:Delete while an enumeration
is occurring, this specification makes no restrictions on the behavior of the enumeration.
The service may include or exclude the results of these operations in real-time, or may
produce an initial snapshot of the enumeration and execute the wsen:Pull requests from this
snapshot, or may deny access to other operations while enumerations are in progress.

WS-Management Selectors [see 2.8] values may be used in conjunction with enumerations
to specify a scope on the enumeration.

 58

5.3 Filter Intepretation
Filters are generally intended to select entire XML infosets or "object" representations.
However, most query languages have both filtering and compositional capabilities in that
they can return subsets of the original representation, or perform complex operations on
the original representation and return something entirely new.

This specification places no restriction on the capabilities of the service, but services may
elect to only provide simple filtering capability and no compositional capabilities. In
general, filtering dialects fall into the following simple hierarchy:

1) Simple enumeration with no filtering

2) Filtered enumeration with no representation change (within the capabilities of XPath,
for example)

3) Filtered enumeration in which a subset is selected (within the capabilities of XPath,
for example)

4) Composition of new output (XQuery), including simple projection

Most services will fall into (1) or (2). However, if a service wishes to support fragment-level
enumeration to complement fragment-level WS-Transfer (4.9), then the service should
implement (3) as well. Only rarely will services implement (4).

Note that XPath 1.0 can be used simply for filtering, or may be used to send back subsets of
the representation (or even the values without XML wrappers). In cases where the result is
not just filtered but being "altered", the technique in 5.6 applies.

If full XPath cannot be supported, a common subset for this purpose is described in Chapter
12 of this specification.

A typical example of use of XPath in a filter is shown below. Assume each item in the
enumeration that would be delivered has the following XML content:

(1) <s:Body>
(2) ...
(3) <wsen:Items>
(4) <DiskInfo xmlns="...">
(5) <LogicalDisk>C:</LogicalDisk>
(6) <CurrentMegabytes>12</CurrentMegabytes>
(7) <BackupDrive> true </BackupDrive>
(8) </DiskInfo>
(9) ...
(10) </wsen:Items>

(11) </s:Body>

The anchor point for the XPath evaluation is at the first element of each item within the
wsen:Items wrapper, and does not reference the <s:Body> or <wsen:Items> elements per
se. The XPath is evaluated as if each item in the wsen:Items block were a separate
document.

When used for simple document processing, the following XPath would "select" the entire
<DiskInfo> node:

(12) /DiskInfo

If used as as a "filter", this XPath does not filter out any instances and is the same as

 59

selecting all instances, or omitting the filter entirely. However, using the following syntax,
the XPath only selects the XML node providing the test expression in brackets evaluates to
logical "true":

(13) /DiskInfo[LogicalDisk="C:"]

In this case, the item must refer to disk drive "C:" or the XML node is not selected. This
XPath would filter out all <DiskInfo> instances for other drives. Full XPath
implementations may support more complex test expressions:

(14) /DiskInfo[CurrentMegabytes>"10" or CurrentMegabytes <"200"]

...which would select only drives with free space within the range of values specified.

In essence, the XML form of the event is logically passed through the XPath processor to
see if it would be selected. If so, it is delivered in the enumeration. If not, the item is
discarded and not delivered as part of the enumeration.

If full XPath cannot be supported, a common subset for this purpose is described in Chapter
12 of this specification.

See the related section 7.2.2 on filtering over WS-Eventing subscriptions.

R5.3-1: A conformant service MAY support the wsman:SelectorSet element and
wsman:Selector values to scope an enumeration, either alone or in
conjunction with a wsen:Filter.

In some cases, the wsman:ResourceURI refers to a domain or class of items, and the
wsman:Selector values act as a scoping mechanism. For example, the ResourceURI may be
used to enumerate "Principals", and an additional "Selector" might scope the enumeration
to a specific Kerberos realm, allowing only "Principals" within the specified Realm to be the
enumerable set before any filters are applied.

This suggests that Selectors may be used as a type of filtering mechanism per se without
using a filter dialect. This is permitted as long as the logical restriction of Selector values is
observed: They are simple tests for equality and if more than one selector is present, they
are logically ANDed.

Continuing with the XPath example above, the XPath

(15) /DiskInfo[BackupDrive='true']

...and the following SelectorSet would provide the same enumeration result set:

(16) <s:Env>

(17) <wsman:SelectorSet>

(18) <wsman:Selector Name="BackupDrive">true</wsman:Selector>

(19) </wsman:SelectorSet>

(20) ...

In the first case, the XPath filters out all drives which are not "backup drives", and in the
second case, the "Selector" forces "BackupDrive" to be "true" as part of the selection
criteria.

XPath and other filter dialects are typically much more powerful than using the
wsman:SelectorSet for filtering, but resource-constrainted implementations may be able to
benefit from using this simple mechanism, since it requires no filter language processor and

 60

uses SOAP processing which is already present for other WS-Management operations.

5.4 WS-Enumeration:Pull
The wsen:Pull message is used to continue an enumeration, i.e., retrieve batches of results
from the initial wsen:Enumerate.

Since wsen:Pull allows the client to specify a wide range of batching and timing parameters,
it is often advisable for the client to know ahead of time what the valid ranges are. This
should be exported from the service in the form of metadata, which is beyond the scope of
this specification. There is no message-based negotiation for discovering the valid ranges of
the parameters.

In general, since wsman:MaxEnvelopeSize size can be requested for any response in WS-
Management, the wsen:MaxCharacters is generally redundant and it is preferable if it is
omitted from the wsen:Pull message and that wsman:MaxEnvelopeSize is used instead.
However, if it is present, it has the following characteristics:

R5.4-1: If a service is exposing enumeration and supports WS-Enumeration:Pull with
the MaxCharacters element, the SERVICE SHOULD implement this as a
general guideline or hint but MAY ignore it if wsman:MaxEnvelopeSize is
present, since that takes precedence. The service SHOULD NOT fault in
the case of a conflict but SHOULD observe the wsman:MaxEnvelopeSize
value.

R5.4-2: If a service is exposing enumeration and supports WS-Enumeration:Pull with
the MaxCharacters element and a single response element would cause
the limit to be exceeded, the service MAY return the single element in
violation of the hint. However, the service MUST NOT violate
wsman:MaxEnvelopeSize in any case.

R5.4-3: If a wsen:PullResponse would violate the wsman:MaxEnvelopeSize request,
the service MUST return a wsman:EncodingLimit fault with a detail code of

a) wsman:faultDetail/MaxEnvelopeSize if the client's requested maximum would
have been exceeded

b) wsman:faultDetail/ServiceEnvelopeLimit if the service's internal limit was
exceeded

In general, wsen:MaxCharacters is a hint, and wsman:MaxEnvelopeSize is a strict rule and
may not be exceeded.

R5.4-4: If any fault occurs during a wsen:Pull, a compliant service SHOULD allow the
client to retry wsen:Pull with other parameters, such as a larger limit or with
no limit and attempt to retrieve the items. The service SHOULD not cancel
the enumeration as a whole, but retain enough context to be able to retry if
the client so wishes. However, the service MAY cancel the enumeration
outright if an error occurs with a wsen:InvalidEnumerationContext fault.

Note that if a fault occurs with a wsen:Pull request, the service should not in general cancel
the entire enumeration, but should simply freeze the cursor and allow the client to try
again.

 61

However, EnumerationContexts from previous wsen:PullResponse messages must not be
reused and are not expected to be considered valid by the service. The
EnumerationContext from only the latest response is considered to be valid. While the
service may return the same EnumerationContext values with each wsen:Pull, it is not
required to do so and may in fact change the EnumerationContext unpredictably.

R5.4-5: A conformant service MAY ignore wsen:MaxTime if
wsman:OperationTimeout is also specified, as wsman:OperationTimeout
takes precedence. These have precisely the same meaning and may be
used interchangeably. If both are used, the service SHOULD only observe
the wsman:OperationTimeout.

.

It is recommended that clients omit wsen:MaxTime and use only wsman:OperationTimeout
and that wman:MaxEnvelopeSize be used in preference to wsen:MaxCharacters.

Note that any fault issued for the wsen:Pull applies to the wsen:Pull itself, not the
underlying enumeration that is in progress. The most recent EnumerationContext is still
considered valid and the service should try to allow a retry of the most recent wsen:Pull so
that the client can continue. However the service may terminate (as specified in R5.3-3)
early upon encountering any kind of problem.

R5.4-6: The service MUST accept a wsen:Pull message with an endpoint reference
identical to that specified for the original wsen:Enumerate. A
wsa:MessageInformationHeaderRequired fault SHOULD be returned if the
EPR is missing or different.

If there is no content available, the enumerator is still considered active and the Pull may be
retried:

R5.4-7: If a service cannot populate the wsen:PullResult with any items before the
timeout, it SHOULD return a wsman:TimedOut fault to indicate that true
timeout conditions occur and that the client is not likely to suceed by simply
issuing another wsen:Pull. If the service is simply waiting for results at the
point of the timeout, it SHOULD return a response with no items and an
updated wsen:EnumerationContext, which MAY have changed, even
though no items were returned:

(1) ...
(2) <s:Body>
(3) <wsen:PullResponse>
(4) <wsen:EnumerationContext> ...possibly updated... </wsen:EnumerationContext>
(5) <wsen:Items/>
(6) </wsen:PullResponse>
(7) </s:Body>
(8)

 62

An empty wsen:Items block is essentially a directive from the service to try again. If the
service faults with a wsman:TimedOut fault, the implication is that a retry is not likely to
succeed. Typically, the service will know which one to return based on its internal state.
For example, on the very first wsen:Pull if the service is waiting for another component,
then a wman:TimedOut fault may be likely. If the enumeration is continuing with no
problem and after 50 requests a particular wsen:Pull times out, the service may simply send
back zero items in the expectation that the client should continue with another wsen:Pull.

R5.4-8: The service MAY terminate the entire enumeration early at any time, in which
case a wsen:InvalidEnumerationContext fault is returned. No further
operations are possible, including wsen:Release. In specific cases, such as
internal errors or responses which are too large, other faults may also be
returned. In all such cases, the service SHOULD invalidate the
enumeration context as well.

R5.4-9: If the wsen:EndOfSequence marker occurs in the wsen:PullResponse, then
the wsen:EnumerationContext MUST be omitted, as the enumeration has
completed. The client is not required to subsequently issue a
wsen:Release.

Normally, the end of an enumeration in all cases is reported by the wsen:EndOfSequence
element being present in the wsen:PullResponse content, not through faults. If the client
attempts to enumerate past the end of an enumeration, a wsen:InvalidEnumerationContext
fault is returned. The client should not issue a wsen:Release if the wsen:EndOfSequence
actually occurs, as the enumeration is then completed and the enumeration context is then
invalid.

R5.4-10: If no wsen:MaxElements is specified, the batch size is 1, as specified in
WS-Enumeration.

R5.4-11: If wsen:MaxElements is larger than the service supports, the service MAY
ignore the value and use any default maximum of its own.

The service should export its maximum wsen:MaxElements value in metadata, but the
format and location of such metadata is beyond the scope of this specification.

R5.4-12: The wsen:EnumerationContext MUST be present in all wsen:Pull requests,
even if the service uses a constant value for the lifetime of the enumeration
sequence. This is mandated by WS-Enumeration and repeated here for
clarity.

 63

5.5 WS-Enumeration:Release
As previously stated, wsen:Release MUST be implemented. It is only used to perform an
early cancellation of the enumeration.

In cases where it is not actually needed, the implementation can expose a dummy
implementation which always succeeds. This promotes completely uniform client-side
messaging.

R5.5-1: The service MUST recognize and process the wsen:Release message if the
enumeration is being terminated early. Note that if a
wsen:EndOfSequence marker occurs in a wsen:PullResponse, the
enumerator is already completed and a wsen:Release cannot be issued, as
there is no up-to-date wsen:EnumerationContext to use.

R5.5-2: The client may fail to deliver the wsen:Release in a timely fashion or may
never send it. A conformant service MAY terminate the enumeration after a
suitable idle time has expired and any attempt to reuse the enumeration
context MUST result in a wsen:InvalidEnumerationContext fault.

R5.5-3: The service MUST accept a wsen:Release message with an endpoint
reference identical to that specified for the original wsen:Enumerate,
assuming the enumeration is still active and the wsen:EndOfSequence has
not occurred. A wsa:MessageInformationHeaderRequired fault SHOULD
be returned if the EPR is missing or different.

R5.5-4: The service MAY accept a wsen:Release asynchronously to any wsen:Pull
requests already in progress and cancel the enumeration. The service
MAY refuse such an asynchronous request and fault it with a
wsman:UnsupportedFeature fault with a detail code of
wsman:faultDetail/AsynchronousRequest. The service may also queue or
block the request and serialize it so that it is processed after the wsen:Pull.

In most cases, it is desirable behavior to be able to asynchronously cancel an outstanding
wsen:Pull. This capability requires the service to be able to asynchronously receive the
wsen:Release while still processing a pending wsen:Pull. Further, it requires that the
EnumerationContext contain information which is constant between wsen:Pull operations.
Note that if the EnumerationContext is a simple increasing integer, the wsen:Release will
always be using a previous value, so the service might consider it to be invalid. If the
EnumerationContext contains a value which is constant across wsen:Pull requests (as well
as any other information that might be needed by the service), the service can more easily
implement the cancelation.

5.6 Ad-Hoc Queries and Fragment-Level Enumerations
As discussed in 4.9, it is desirable that clients should be able to access subsets of a
representation. This is especially important in the area of query processing, where users
routinely wish to execute XPath or XQuery operations over the representation to receive ad-
hoc results.

Since SOAP messages must conform to known schemas and since ad-hoc queries return
results which are dynamically generated and may conform to no schema, the
wsman:XmlFragment wrapper from 4.9 must be used to wrap the responses.

R5.6-1: The service MAY support ad-hoc compositional queries, projections, or
enumerations of fragments of the representation objects by supplying a

 64

suitable dialect in the wsen:Filter. The resulting set of Items in the
wsen:Pull SHOULD be wrapped with wsman:XmlFragment wrappers:

(1) ...
(2) <s:Body>
(3) <wsen:PullResponse>
(4) <wsen:EnumerationContext> ...possibly updated... </wsen:EnumerationContext>
(5) <wsen:Items>
(6) <wsman:XmlFragment>
(7) XML content
(8) </wsman:XmlFragment>
(9) <wsman:XmlFragment>
(10) XML content

(11) </wsman:XmlFragment>

(12) ...etc.

(13) </wsen:Items>

(14) </wsen:PullResponse>

(15) </s:Body>

The schema for wsman:XmlFragment contains a directive to suppress schema validation,
allowing a validating parser to accept ad-hoc content produced by the query processor
acting behind the enumeration.

Note that XPath 1.0 and XQuery 1.0 already support returning subsets or compositions of
representations, so they are suitable for use in this regard.

R5.6-2: If the service does not support fragment-level enumeration, it should return a
wsen:FilterDialectRequestedUnavailable fault, the same as for any other
unsupported dialect.

Note that the XPath expression used for filtering is still that described in WS-Enumeration.
The wsman:XmlFragment wrappers are applied after the XPath is evaluated in order to
prevent schema violations if the XPath selects node sets which are fragments and not legal
vis-a-vis the original schema.

5.7 Enumeration of EPRs
It is typically not possible to simply infer the EPR of an enumerated object by inspection. In
many cases, it is desirable to enumerate the endpoint references of objects rather than the
objects themselves. Such EPRs should be usable in subsequent wxf:Get or wxf:Delete
requests, for example. Similarly, it is often desirable to enumerate both the objects and
the the associated endpoint references.

The default behavior for wsen:Enumerate is as defined in the WS-Enumeration specification.
However, WS-Management provides an additional extension for controlling the output of th
enumeration.

R5.7-1: A service MAY optionally support the wsman:EnumerationMode modifier
element with a value of wsman:EnumerateEPR, which causes only the
EPRs to the objects to be returned as the result of the enumeration.

 65

Here is an example:

(1)
(2) <s:Header>
(3) ...
(4) <wsa:Action>
(5) http://schemas.xmlsoap.org/ws/2004/09/enumeration/Enumerate
(6) </wsa:Action>
(7) ...
(8)
(9) <s:Body>
(10) <wsen:Enumerate>

(11) <wsen:Filter Dialect="..."> filter </wsen:Filter>

(12) <wsman:EnumerationMode> wsman:EnumerateEPR </wsman:EnumerationMode>

(13) ...

(14)

The filter, if any, is still applied to the enumeration, but the response contains only the EPRs
of the items that would have been returned. These EPRs are intended for use in subsequent
wxf:Get operations.

The hypothetical response would appear as follows:

(15) <s:Body>

(16) <wsen:PullResponse>

(17) <wsen:Items>

(18) <wsa:EndpointReference> ... </wsa:EndpointReference>

(19) <wsa:EndpointReference> ... </wsa:EndpointReference>

(20) <wsa:EndpointReference> ... </wsa:EndpointReference>

(21) ...

(22) </wsen:Items>

(23) </wsen:PullResponse>

R5.7-2: A service MAY optionally support the wsman:EnumerationMode modifier with
the value of EnumerateObjectAndEPR. If present, the enumerated
objects are wrapped in a wsman:Item which contains two XML
representations juxtaposed: the payload representation followed by the
associated wsa:EndpointReference.

As an example, the wsman:EnumerationMode header appears as follows:

(24) <s:Header>

(25) ...

(26) <wsa:Action>

(27) http://schemas.xmlsoap.org/ws/2004/09/enumeration/Enumerate

(28) </wsa:Action>

(29)

(30) <s:Body>

 66

(31) <wsen:Enumerate>

(32) <wsen:Filter Dialect="..."> filter </wsen:Filter>

(33) <wsman:EnumerationMode> wsman:EnumerateObjectAndEPR </wsman:EnumerationMode>

(34) ...

The response would appear as follows:

(35) <s:Body>

(36) <wsen:PullResponse>

(37) <wsen:Items>

(38) <wsman:Item>

(39) <PayloadObject xmlns="..."> ... </PayloadObject> <!-- Object -->

(40) <wsa:EndpointReference> ... </wsa:EndpointReference> <!-- EPR -->

(41) </wsman:Item>

(42) <wsman:Item>

(43) <PayloadObject xmlns="..."> ... </PayloadObject> <!-- Object -->

(44) <wsa:EndpointReference> ... </wsa:EndpointReference> <!-- EPR -->

(45) </wsman:Item>

(46) ...

(47) </wsen:Items>

(48) </wsen:PullResponse>

In the above example, each item is wrapped in a wsman:Item wrapper (line 46), which
itself contains the representation object (47) followed by its EPR (48). As many
wsman:Item objects may be present as is consistent with other encoding limitations.

R5.7-3: If a service does not support the wsman:EnumerationMode modifier, it MUST
return a fault of wsman:UnsupportedFeature with a detail code of
wsman:faultDetail/EnumerationMode.

6.0 Custom Actions (Methods)

6.1 General
Custom actions or 'methods' are nothing more than ordinary SOAP messages with unique
Actions. An implementation may support resource-specific methods in any form, subject to
the addressing model and restrictions described in section 2.0 of this specification.

R6.1-1: A conformant service is NOT REQUIRED to expose any custom actions or
methods.

R6.1-2: If custom methods are exported, the ResourceURI, Selectors and other
header usages defined in this specification MUST be observed in the
addressing model as specified in section 2.0, and each custom method
MUST have a unique wsa:Action.

Thus, a custom method must be directed to a specific Resource (using the ResourceURI and
Selectors if required) and may not rely entirely on a wsa:To address, or else the EPR
translation mechanism in 2.14 can be used.

 67

In general, Options should not be used for custom methods, since options are a
parameterization technique for message types which are not user-extensible, such as WS-
Transfer. Custom methods defined in WSDL expose any required parameters and thus
expose naming and type checking in a stringent way, so mixing Options with parameters is
likely to lead to confusion.

This specification places no restrictions on Options being used with custom WSDL-based
operations, however.

Note that custom actions have two distinct identities: The ResourceURI which can identify
the WSDL and Port (or Interface), and the wsa:Action which identifies the specific method.
If there is only one method in the interface, in a sense the ResourceURI and wsa:Action are
identical.

It is not an error to utilize the wsa:Action URI for the ResourceURI of a custom method, but
both will still be required in the message for uniform processing on both clients and servers.
For example, the following action to reset a network card may have the following EPR
usage:

(1) <s:Header>
(2) <wsa:To>
(3) http://1.2.3.4/wsman/
(4) </wsa:To>
(5) <wsman:ResourceURI> http://acme.com/2005/02/networkcards/reset </wsman:ResourceURI>
(6) <wsa:Action>
(7) http://acme.com/2005/02/networkcards/reset
(8) </wsa:Action>
(9) ...

In many cases, the ResourceURI will be equivalent to a WSDL name and port, and the
wsa:Action URI contain an additional token as a suffix:

(10) <s:Header>

(11) <wsa:To>

(12) http://1.2.3.4/wsman

(13) </wsa:To>

(14) <wsman:ResourceURI>http://acme.com/2005/02/networkcards</wsman:ResourceURI>

(15) <wsa:Action>

(16) http://acme.com/2005/02/networkcards/reset

(17) </wsa:Action>

(18) ...

And the ResourceURI may be completely unrelated to the wsa:Action:

(19) <s:Header>

(20) <wsa:To>

(21) http://1.2.3.4/wsman

(22) </wsa:To>

(23) <wsman:ResourceURI>http://acme.com/products/management/networkcards</wsman:ResourceURI>

(24) <wsa:Action>

(25) http://acme.com/2005/02/netcards/reset

(26) </wsa:Action>

All of these are legal usage.

 68

7.0 Eventing

7.1 General
If the service can emit events, then it should publish those events using WS-Eventing
messaging and paradigms. WS-Management further places additional restrictions and
constraints on the general WS-Eventing specification.

R7.1-1: If a Resource can emit events and allows clients to subscribe to and receive
event messages, it MUST do so by implementing WS-Eventing as specified
in this specification.

R7.1-2: If WS-Eventing is supported, the Subscribe, Renew, and Unsubscribe
messages MUST be supported. SubscriptionEnd is OPTIONAL, and
GetStatus is NOT RECOMMENDED.

7.2 Subscribe

7.2.1 General
WS-Management uses wse:Subscribe substantially as documented in WS-Eventing, except
that the WS-Management endpoint reference model is incorporated as described in 2.1.

R7.2.1-1: The identity of the event source MUST be based on the
wsman:ResourceURI and wsman:SelectorSet values.

R7.2.1-2: A service is NOT REQUIRED to support distinct addresses and distinct
security settings for NotifyTo and EndTo, and MAY require that these be the
same network address, although they MAY have separate reference
properties and reference parameters in all cases. If the service cannot
support the requested addressing, it SHOULD return a
wsman:UnsupportedFeature fault with a detail code of
wsman:faultDetail/AddressingMode.

The service should verify that the address will actually be usable. For example, if the
address cannot be reached due to firewall configuration and the service can detect this,
then a fault should be issued.

R7.2.1-3: Because many delivery modes require a separate connection to deliver the
event, the service SHOULD comply with the security profiles defined in
section 9 of this specification if HTTP or HTTPS is used to deliver events. If
no security is specified, the service MAY attempt to use default security
mechanisms, or return a wse:UnsupportedFeature fault with a detail code of
wsman:faultDetail/InsecureAddress.

Since clients may need to have client-side context sent back with each event delivery, the
wse:NotifyTo address in the wse:Delivery block should be used for this purpose. This
wse:NotifyTo may contain any number of client-defined reference parameters and reference
properties.

R7.2.1-4: A service MAY validate the address by attempting a connection while the

 69

wse:Subscribe request is being processed in order to ensure delivery can
occur successfully. If the service determines the address is not valid or
permissions cannot be acquired, it should emit a
wse:EventSourceUnableToProcess fault with a detail code of
wsman:faultDetail/UnusableAddress.

This can occur both when the address is incorrect or if the event source cannot acquire
permissions to properly deliver events.

R7.2.1-5: A service is REQUIRED to deliver any reference parameters in the
wse:NotifyTo address with each event delivery as specified in 2.2 of this
specification. If EndTo is supported, this behavior applies as well.

As with other WS-Management operations, the endpoint reference described by the
wsman:ResourceURI (and optionally the wsman:SelectorSet values) to identify the event
source to which the subscription is directed. In many cases, the ResourceURI identifies a
real or virtual event log and the subscription is intended to provide real-time notifications of
any new entries added to the log. In many cases, the wsman:SelectorSet element may not
be used as part of the endpoint reference.

If a client needs to have events delivered to more than one destination, more than one
subscription is required.

R7.2.1-6: If the events contain localized content, the service SHOULD accept a
subscription with a wsman:Locale block acting as a "hint" (see 3.3) within
the wse:Delivery block of the wse:Subscribe message. The language is
encoded in an xml:lang attribute using RFC 3066 language codes. The
service SHOULD attempt to localize any descriptive content to the specified
language when delivering such events:

(1) <wse:Subscribe>
(2) <wse:Delivery>
(3) <wse:NotifyTo> ... </wse:NotifyTo>
(4) <wsman:Locale xml:lang="language-code"/>
(5) </wse:Delivery>
(6) </wse:Subscribe>

Note that in this context, the wsman:Locale (already defined in section 3.3) is not a SOAP
header and mustUnderstand cannot be used.

7.2.2 Filtering
The observations on the interpretation of the filter described in 5.3 also apply here.

The standard wse:Filter dialect is http://www.w3.org/TR/1999/REC-xpath-
19991116, which is XPath 1.0. Resource constrained implementations may find it difficult
to provide full XPath processing and yet still wish to use a subset of XPath syntax. This
does not require the addition of a new dialect, as long as the expression specified in the
filter is a true XPath expression. The use of the filter dialect URI does not imply that the

 70

service supports the entire specification for that dialect, only that the expression conforms
to the rules of that dialect. Most services will use XPath only for filtering, but will not
support the composition of new XML or removing portions of XML which would result in the
XML fragment violating the schema of the event.

A typical example of use of XPath in a subscription follows. Assume each event that would
be delivered has the following XML content:

(1) <s:Body>
(2) <LowDiskSpaceEvent xmlns="...">
(3) <LogicalDisk>C:</LogicalDisk>
(4) <CurrentMegabytes>12</CurrentMegabytes>
(5) <Megabytes24HoursAgo>17</Megabytes24HoursAgo>
(6) </LowDiskSpaceEvent>
(7) </s:Body>

Note that the event is wholly contained within the s:Body of the SOAP message. The
Anchor point for the XPath evaluation is the first element within the s:Body, and does not
reference the <s:Body> element per se. The XPath is evaluated as if the content were a
separate XML document.

When used for simple document processing, the following XPath would "select" the entire
<LowDiskSpaceEvent> node:

(8) /LowDiskSpaceEvent

If used as as a "filter", this XPath does not filter out any instances and is the same as
selecting all instances of the event, or omitting the filter entirely. However, using the
following syntax, the XPath only selects the XML node providing the test expression in
brackets evaluates to logical "true":

(9) /LowDiskSpaceEvent[LogicalDisk="C:"]

In this case, the event must refer to disk drive "C:" or the XML node is not selected. This
XPath would filter out all <LowDiskSpaceEvent> events for other drives. Full XPath
implementations may support more complex test expressions:

(10) /LowDiskSpaceEvent[LogicalDisk="C:" and CurrentMegabytes < "20"]

In essence, the XML form of the event is logically passed through the XPath processor to
see if it would be selected. If so, it is delivered as an event. If not, the event is discarded
and not delivered to the subscriber.

Note that XPath 1.0 can be used simply for filtering, or may be used to send back subsets of
the representation (or even the values without XML wrappers). In cases where the result is
not just filtered but being "altered", the technique in 5.6 applies.

If full XPath cannot be supported, a common subset for this purpose is described in Chapter
12 of this specification.

R7.2.2-1: The wse:Filter element MUST contain either simple text or a single XML
element of a single or complex type. A service SHOULD reject any Filter
with mixed content or multiple peer XML elements using a
wse:EventSourceUnableToProcess fault.

R7.2.2-2: A conformant service is NOT REQUIRED to support the entire syntax and
processing power of the specified Filter Dialect. The only requirement is

 71

that the specified Filter is syntactically correct within the definition of the
Dialect. Subsets are therefore legal. If the specified filter exceeds the
capability of the service, a wse:EventSourceUnableToProcess fault
SHOULD be returned with text explaining why the filter was problematic.

R7.2.2-3: If a service requires complex initialization parameters in addition to the
filter, these SHOULD be part of the wse:Filter block, as they logically form
part of the filter initialization, even if some of the parameters are not strictly
used in the filtering process. A unique Dialect URI MUST be devised for
the event source in this case and the schema and usage published.

R7.2.2-4: If the service supports composition of new XML or filtering to the point
where the resultant event would not conform to the original schema for that
event, the event delivery SHOULD be wrapped in the same way as content
for fragment-level transfer (4.9 of this specification).

Note that events, regardless of how they are filtered or reduced, must conform to some
kind of XML schema definition when they are actually delivered. It is not legal to simply
send out unwrapped XML fragments during delivery.

R7.2.2-5: If the service requires specific initialization XML in addition to the filter in
order to formulate a subscription, this initialization XML MUST form part of
the filter body and be documented as part of the filter dialect.

This promotes a consistent location for ininitialization content, which may be logically seen
as part of the filter anyway. The filter XML schema should cleanly separate the initialization
and filtering parts into separate XML elements.

See the related section 5.3 on filtering over WS-Enumeration.

R7.2.2-6: A conformant service MAY support the wsman:SelectorSet element and
wsman:Selector values to scope the events emitted by an event source,
either alone or in conjunction with a wse:Filter.

In some cases, the wsman:ResourceURI refers to a domain or class of items, and the
wsman:Selector values can act as a scoping mechanism. For example, the ResourceURI
may be used to provide all "hardware failure" events, and the "Selector" may scope this to
"Storage" devices or "Display" devices.

This suggests that Selectors may be used as a type of filtering mechanism per se without
using a filter dialect. This is permitted as long as the logical restriction of Selector values is
observed: They are simple tests for equality and if more than one selector is present, they
are logically ANDed.

XPath and other filter dialects are typically much more powerful than using the
wsman:SelectorSet for filtering, but resource-constrainted implementations may be able to
benefit from using this simple mechanism, since it requires no filter language processor and
uses SOAP processing which is already present for other WS-Management operations.

7.2.3 Connection Retries
Due to the nature of event delivery, at event-time the subscriber may not be reachable.
Rather than terminate all subscriptions immediately, typically the service will attempt to

 72

connect several times with suitable timeouts before giving up.

R7.2.3-1: A service MAY observe any connection retry policy, or allow the subscriber
to define it by including the following wsman:ConnectionRetry instruction in
a subscription. The service is NOT REQUIRED to accept
wsman:ConnectionRetry and may return a wsman:UnsupportedFeature
fault with a detail code of wsman:faultDetail/DeliveryRetries. This only
applies to failures to connect and does not include replay of actual SOAP
deliveries:

(1) <wse:Subscribe>
(a) <wse:Delivery>
(b) <wse:NotifyTo> ... </wse:NotifyTo>
(c) <wsman:ConnectionRetry Total="count"> xs:duration </wsman:ConnectionRetry>
(d) </wse:Delivery>
(e) </wse:Subscribe>

The following describes additional, normative constraints on the outline listed above:

wsman:ConnectionRetry
An xs:interval on how long to wait between retries while trying to connect.

wsman:ConnectionRetry/@Total
How many retries to attempt, observing the above interval between the attempts.

R7.2.3-2: If the retry counts are exhausted, the subscription SHOULD be considered
expired and any normal operations that would occur upon expiration should
occur.

Note that the retry mechanism only applies to attempts to connect. Failures to deliver on
an established connection should result in the termination of the connection according to
the rules of the transport in use, and termination of the subscription. Other Web services
mechanisms can be used to synthesize reliable delivery or safe replay of the actual
deliveries.

7.2.4 wse:SubscribeResponse
The service may of course return any service-specific reference properties or reference
parameters in the wse:SubscriptionManager, and these must be used by the subscriber
(client) later when issuing an Unsubscribe and Renew messages.

R7.2.4-1: In the wse:SubscribeResponse, the service MAY specify any EPR for the
wse:SubscriptionManager. However, the address is typically expected to
be the same as the wsa:To address of the original wse:Subscribe request,
or the client may not be able to use the wse:SubscriptionManager content
or access the specified address. It is RECOMMENDED that the
wsa:Address be the same as the address used in the wsa:Subscribe
message.

R7.2.4-2: A conformant service is NOT REQUIRED to return the wsen:Expires field in

 73

the response, but as specified in WS-Eventing, this implies the subscription
does not expire until explicitly canceled.

7.2.5 Heartbeats
A typical problem with event subscriptions is a situation in which no event traffic occurs. It
is difficult for clients to know whether no events matching the subscription have occurred or
whether the subscription has simply failed and the client was not able to receive any
notification.

Because of this, WS-Management defines a "heartbeat" pseudo-event which can be
periodically sent for any subscription. This event is sent if no regular events occur, and the
client then knows that the subscription is still active. Should the heartbeat event not arrive
at the client, then the client knows that connectivity is bad or that the subscription has
expired and it may take corrective action.

The heartbeat event is sent in place of the events that would have occurred and is never
intermixed with "real" events. In all modes, including batched, it occurs alone.

To request heartbeat events as part of a subscription, the wse:Subscribe request has an
additional field in the wse:Delivery section:

(1) <wse:Delivery>
(2) ...
(3) <wsman:Heartbeats> xs:duration </wsman:Heartbeats>
(4) ...
(5) </wse:Delivery>

The following describes additional, normative constraints on the outline listed above:

wsman:Heartbeats

Specifies that heartbeat events are added to the event stream at the specified interval.

R7.2.5-1: A service is NOT REQUIRED to support heartbeat events, but SHOULD do
so. If the service does not support them, a wsman:UnsupportedFeature
fault with a detail code of wsman:faultDetail/Heartbeats MUST be returned
to the client. Heartbeats apply to all delivery modes.

Hearbeats apply to "pull" mode deliveries as well, in that they are a hint to the publisher
about how often to expect a wsen:Pull request. The service may refuse to deliver events if
the client does not regularly call back at the heartbeat interval. If no events are available at
the heartbeat interval, the service simply includes a hearbeat event as the result of the
wsen:Pull.

R7.2.5-2: While a subscription with heartbeats is active, the service MUST ensure
that either real events or heartbeats are sent out within the specified
wsman:Hearbeat interval. The service MAY send out heartbeats at this
interval in addition to the events due to colliding time windows and race
conditions, as long as the heartbeat events are sent separately (not
batched with other events). The goal is to ensure that some kind of event
traffic always occurs within the heartbeat interval.

R7.2.5-3: A conformant service MAY send out hearbeats at earlier intervals than

 74

specified in the subscription. However, the events should NOT be
intermixed with other events when batching delivery modes are used.
Typically, hearbeats are sent out only when no real events occur. It is NOT
a REQUIREMENT for a service to fail to produce heartbeats at the
specified interval if real events have been delivered.

R7.2.5-4: A conformant service MUST NOT send out heartbeats asynchronously to
any event deliveries already in progress. They must be delivered in
sequence like any other events, although they are delivered alone as single
events or the only event in a batch.

In practice, heartbeat events are based on a countdown timer. If no events occur, the
heartbeat is sent out alone. However, every time a real event is delivered, the heartbeat
countdown timer is reset. If a steady stream of events occurs, heartbeats may never be
delivered.

Heartbeats need to be acknowledged like any other event.

The client will assume that the subscription is no longer active if no heartbeats are received
within the specified interval, so the service should proceed to cancel the subscription and
send any requested SubscriptionEnd messages, as the client will likely resubscribe shortly.
Used in combination with bookmarks, heartbeats can be used to achieve highly reliable
delivery with known latency behavior.

The hearbeat event itself is simply an event message with no body and is identified by its
wsa:Action URI:

(1) s:Envelope ...>
(2) <s:Header>
(3) <wsa:To> </wsa:To>
(4) <wsa:Action s:mustUnderstand="true">
(5) http://schemas.xmlsoap.org/ws/2005/06/management/Heartbeat
(6) </wsa:Action>
(7) ...
(8)

7.2.6 Bookmarks
Reliable delivery of events is difficult to achieve. It is highly desirable that management
subscribers have a mechanism where they can be certain that all events from a source have
been received. When subscriptions expire or when deliveries fail, windows of time can occur
in which the client cannot be certain that critical events have not occurred. Rather than
using a highly complex transacted delivery model, WS-Management defines a simple
mechanism for ensuring that either all events are either delivered or it can be detected that
events have been dropped.

For this to succeed, event sources must be backed by logs, whether short-term or long-
term. The client subscribes as normal for WS-Eventing, specifying that Bookmarks should
be used. The service then sends a new bookmark along with each event delivery, which the
client is responsible for persisting. This bookmark is essentially a context or a pointer to the
location in the logical event stream that matches the subscription filter. As each new
delivery occurs, the client updates the bookmark in its own space. If the subscription
expires or is terminated unexpectedly, the client may subscribe again, using the last known
bookmark. In essence, the subscription filter identifies the set of events that are desired,
and the bookmark tells the service where to start in the log. The client may then pick up

 75

where it left off.

Note that this mechanism is immune to transaction problems, because the client can simply
start from any of several recent bookmarks. The only requirement is that the service have
some type of persistent log to which to apply the bookmark. If the submitted bookmark is
too old (temporally or positionally within the log), the service can fault the request, and the
client at least reliably knows that events have been dropped.

R7.2.6-1: A conformant service is NOT REQUIRED to support the WS-Management
Bookmark mechanism. If the service does not support bookmarks, it should
return a wsman:UnsupportedFeature fault with a detail code of
wsman:faultDetail/Bookmarks.

To request bookmark services, the client includes the following element in the
wse:Subscribe request in the Delivery element:

(1) <s:Body>
(2) <wse:Subscribe>
(3) <wse:Delivery>
(4) ...
(5) <wsman:SendBookmarks/>
(6) </wse:Delivery>
(7) </wse:Subscribe>
(8) </s:Body>

The following describes additional, normative constraints on the outline listed above:

wsman:SendBookmarks

This is an element with no value that instructs the service to send a bookmark with each
event delivery. Bookmarks apply to all delivery modes.

The bookmark is a token which represents an abstract pointer in the event stream, but it is
not material whether it points to the last delivered event or the last event plus one (the
upcoming event), since the token is supplied to the same implementation during a
subsequent wse:Subscribe operation. The service may thus attach any service-specific
meaning and structure to it with no change to the client.

If bookmarks are requested, each event delivery contains a new bookmark value as a SOAP
header, and the format of the bookmark is entirely determined by the service and should be
treated as an opaque value:

(11) <s:Envelope

(12) xmlns:s="http://www.w3.org/2003/05/soap-envelope"

(13) xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"

(14) xmlns:wsman="http://schemas.xmlsoap.org/ws/2005/06/management">

(15) <s:Header>

(16) <wsa:To s:mustUnderstand="true">http://2.3.4.5/client</wsa:To>

(17) ...

(18) <wsman:Bookmark> xs:any </wsman:Bookmark>

(19) ...

 76

(20) </s:Header>

(21) <s:Body>

(22) ...event content...

(23) </s:Body>

(24) </s:Envelope>

The following describes additional, normative constraints on the outline listed above:

wsman:Bookmark

XML content supplied by the service which indicates the logical position of this event or
event batch in the event stream implied by the subscription.

R7.2.6-2: If bookmarks are supported, they MUST consist of XML content defined by
the specific service, but may not be simple text. [That is, wsman:Bookmark
does not support mixed content].

R7.2.6-3: If bookmarks are supported, the service MUST send an updated bookmark
with each event delivery using a wsman:Bookmark element in the Header.
Bookmarks only accompany event deliveries and are not part of any
SubscriptionEnd message.

Once the subscription has terminated, for whatever reason, a subsequent wse:Subscribe on
the part of the client may include the bookmark in the subscribe request. The service then
'knows' where to start. The last-known bookmark received by the client is added to the
wse:Subscribe message as a new block, positioned after the wse:Filter element:

(25) ...

(26) <s:Body>

(27) <wse:Subscribe>

(28) <wse:Delivery> ... </wse:Delivery>

(29) <wse:Expires> ... </wse:Expires>

(30) <wse:Filter> ... </wse:Filter>

(31) <wsman:Bookmark>

(32) ...last known bookmark from a previous delivery...

(33) </wsman:Bookmark>

(34) <wsman:SendBookmarks/>

(35) </wse:Subscribe>

(36) </s:Body>

The following describes additional, normative constraints on the outline listed above:

wsman:Bookmark

Arbitrary XML content previously supplied by the service as a wsman:Bookmark during
event deliveries from a previous subscription.

wsman:SendBookmarks

An instruction to continue delivering updated bookmarks with each event delivery.

R7.2.6-4: The bookmark is a pointer to the last event delivery or batched delivery.
The service MUST resume delivery at the first event or events after the
event represented by the bookmark. The service MUST NOT replay events
associated with the bookmark or skip any events since the bookmark.

R7.2.6-5: The service MAY support a short queue of previous bookmarks, allowing

 77

the subscriber to start using any of several previous bookmarks. If
bookmarks are supported, the service is REQUIRED only to support the
most recent bookmark for which delivery had apparently succeeded.

R7.2.6-6: If the bookmark cannot be honored, the service MUST fault with a
wsman:InvalidBookmark, with one of the following detail codes:

wsman:faultDetail/Expired : The bookmark has expired (the source is not able to back
up and replay from that point).

wsman:faultDetail/InvalidFormat : The format is unknown

 If multiple new subscriptions are made using a previous bookmark, the
service MAY allow multiple reuse or MAY limit bookmarks to a single
subscriber and may even restrict how long bookmarks may be used before
becoming invalid.

There is a predefined, reserved bookmark value for indicating that the subscription should
start at the earliest possible point in the event stream backed by the publisher:
http://schemas.xmlsoap.org/ws/2005/06/management/bookmark/earliest. If a
subscription is received with this bookmark, the event source should replay all possible
events which match the filter and of course any events which subsequently occur for that
event source. Absence of any bookmark means "begin at the next available event".

R7.2.6-7: A conformant service MAY support the reserved bookmark
http://schemas.xmlsoap.org/ws/2005/06/management/bookmark/earlie
st and not support any other type of bookmark.

7.2.7 Delivery Modes

A WS-Management implementation may support a variety of event delivery modes.

In essence, delivery consists of

a) A delivery mode (how events are packaged)

b) An address (the transport and network location)

c) An authentication profile to use when connecting or delivering the events (security)

The standard security profiles are discussed in Section 9 and may be required for
subscriptions if the service needs hints or other indications as to which security model to
use at event-time.

If the delivery mode is supported but not actually usable due to firewall configuration, then
a wse:DeliveryModeRequestedUnavaiable fault should be issued with additional detail to this
effect.

R7.2.7-1: For any given transport, a conformant service SHOULD support at least
one of the delivery modes listed below in order to interoperate with standard
clients:

a) http://schemas.xmlsoap.org/ws/2004/08/eventing/DeliveryModes/Push

 78

b) http://schemas.xmlsoap.org/ws/2005/06/management/PushWithAck

c) http://schemas.xmlsoap.org/ws/2005/06/management/Events

d) http://schemas.xmlsoap.org/ws/2005/06/management/Pull

Note that the delivery mode does not imply any specific transport.

Modes describe SOAP message behavior and are unrelated to the transport that is in use.
Note that a delivery mode implies a specific SOAP message format, so a message which
deviates from that format will require a new delivery mode.

R7.2.7-2: The wse:NotifyTo address in the wse:Subscribe message MUST support
only a single delivery mode.

This is actually a requirement on the client, since the service cannot verify that this is true.
However, if not observed by the client, the service may not operate correctly. If the
subscriber supports multiple delivery modes, then the wse:NotifyTo address must be
differentiated in some way, such as by adding an additional reference parameter.

7.2.8 Event Action URI

Each event type typically has its own wsa:Action in order to quickly identify and route the
event. If an event type does not define its own action URI, then the following URI should be
used as a default:

http://schemas.xmlsoap.org/ws/2005/06/management/Event

This URI may have to be used in cases where event types are inferred in real-time from
other sources and were not published as Web service events, and thus do not have a
designated Action URI. This specification places no restrictions on the wsa:Action URI for
events. It is recommended that the URI be as specific as possible in most cases so that the
URI can act as a reliable dispatching point. In many cases, a fixed schema may serve to
model many different types of events, in which case the event "ID" is simply a field in the
XML content of the event. The URI in this case may reflect the schema and be
undifferentiated for all of the various event IDs which may occur, or it may reflect the
specific event by the expedient of suffixing the event ID to the wsa:Action URI. This
specification places no restrictions on the granularity of the URI, but careful consideration of
these issues should be made when designing the URIs for events.

7.2.9 Delivery Sequencing and Acknowledgement
For some event types, ordered and acknowledged delivery is important, and with some
types of events the order of arrival is not significant. WS-Management defines four
standard delivery modes:

(f) http://schemas.xmlsoap.org/ws/2004/08/eventing/DeliveryModes/Push
With this mode, there is only one event per SOAP message, and there is no
acknowledgment or SOAP response with this delivery mode. The service MAY deliver

 79

events for the subscription asynchronously without regarding to any events already in
transit. This is primarily useful when the order of events does not matter, such as with
events containing running totals in which each new event can replace the previous one
completely and the timestamp is sufficient for identifying the most recent event.

(g) http://schemas.xmlsoap.org/ws/2005/06/management/PushWithAck
With this mode, there is only one event per SOAP message, but each event is
acknowledged before another may be sent. The service MUST queue all undelivered
events for the subscription only deliver each new event after the previous one has been
acknowledged.

(h)http://schemas.xmlsoap.org/ws/2005/06/management/Events
With this mode, there can be many events per SOAP message, but each batch is
acknowledged before another may be sent. The service MUST queue all events for the
subscription and deliver them in that order, maintaining the order in the batches.

(i) http://schemas.xmlsoap.org/ws/2005/06/management/Pull
With this mode, there can be many events per SOAP message, but each batch is
acknowledged. Since the receiver uses wsen:Pull to synchronously retrieve the events,
acknowledgment is implicit. The order of delivery must be maintained.

There is no implication that ordering of events occurs across subscriptions.

The acknowledgement model is discussed in 7.7.

7.2.10 Push Mode
The standard mode from WS-Eventing is
http://schemas.xmlsoap.org/ws/2004/08/eventing/DeliveryModes/Push in which
each delivery consists of a single event. There is no acknowledgement, so it is not possible
to fault the delivery in order to cancel the subscription.

Therefore, subscriptions made with this delivery mode should have short durations to
prevent a situation in which deliveries cannot be stopped if the wse:SubscriptionManager
content from the wse:SubscribeResponse information is corrupted or lost.

To promote fast routing of events, the required wsa:Action URI in each event message
should be distinct for each event type, regardless of how strongly typed the event Body is.

R7.2.10-1: A service MAY support the
http://schemas.xmlsoap.org/ws/2004/08/eventing/DeliveryModes/Push
delivery mode.

R7.2.10-2: To precisely control how to deal with events which are too large, the
service MAY accept the following additional instruction in a subscription:

(1) <wse:Delivery>
(2) <wsa:Address> ... </wsa:Address>
(3) ...
(4) <wsman:MaxEnvelopeSize Policy="enumConstant">
(5) xs:long
(6) </wsman:MaxEnvelopeSize>
(7) ...

The following describes additional, normative constraints on the outline listed above:

wsman:MaxEnvelopeSize

 80

The maximum number of octets for the entire SOAP envelope in a single event delivery.

wsman:MaxEnvelopeSize/@Policy

An OPTIONAL value with one of the following enumeration values:

(a) CancelSubscription, meaning to cancel on the first oversized event.

(b) Skip, meaning to silently skip oversized events.

(c) Notify, meaning to notify the subscriber that events were dropped as specified in
7.9.

R7.2.10-3: If wsman:MaxEnvelopeSize is requested, the service MUST NOT send an
event body which is larger than the specified limit. The default behavior is
to notify the subscriber as specified in 7.9 unless otherwise instructed in the
subscription and attempt to continue delivery. If the event exceeds any
internal default maximums, the service SHOULD also attempt to notify as
specified in 7.9 rather than terminate the subscription unless otherwise
specified in the subscription. If wsman:MaxEnvelopeSize is too large for
the service, the service MUST return a wsman:EncodingLimit fault with a
detail code of wsman:faultDetail/MaxEnvelopeSize.

Note that in the absence of any other Policy instructions, services should deliver
notifications of dropped events to subscribers, as specified in 7.9.

7.2.11 PushWithAck Mode

This is identical to the standard "Push" mode except that each delivery is acknowledged.
There is still one event per delivery, and the wsa:Action indicates the event type. However,
a SOAP-based acknowledgment as described in 7.7 must occur.

The delivery mode URI is:

 http://schemas.xmlsoap.org/ws/2005/06/management/PushWithAck

In every other respect except the delivery mode URI, this mode is identical to Push mode as
described in 7.2.10.

R7.2.11-1: A service SHOULD support the
http://schemas.xmlsoap.org/ws/2005/06/management/PushWithAck
delivery mode. If the delivery mode is not supported, a fault of
wse:DeliveryModeRequestedUnavailable SHOULD be returned.

For management, acknowledged delivery is typically more useful than unacknowledged
delivery.

7.2.12 Batched Delivery Mode
Batching of events is an effective way of minimizing event traffic from a high-volume event
source without sacrificing event timeliness. WS-Management defines a custom event
delivery mode that allows an event source to bundle multiple outgoing event messages into
a single SOAP envelope. Delivery is always acknowledged, using the model defined in 7.7.

 81

R7.2.12-1: A service MAY support the
http://schemas.xmlsoap.org/ws/2005/06/management/Events delivery
mode. If the delivery mode is not supported, a fault of
wse:DeliveryModeRequestedUnavailable SHOULD be returned.

For this delivery mode, the wse:Delivery element has the following format:

(1) <wse:Delivery Mode="http://schemas.xmlsoap.org/ws/2005/06/management/Events">
(2) <wse:NotifyTo>
(3) wsa:EndpointReferenceType
(4) </wse:NotifyTo>
(5) <wsman:MaxElements> xs:long </wsman:MaxElements> ?
(6) <wsman:MaxTime> xs:duration </wsman:MaxTime> ?
(7) <wsman:MaxEnvelopeSize Policy="enumConstant"> xs:long </wsman:MaxEnvelopeSize> ?
(8) </wse:Delivery>

The following describes additional, normative constraints on the outline listed above:

wse:Delivery/@Mode
MUST be "http://schemas.xmlsoap.org/ws/2005/06/management/Events".

wse:Delivery/wse:NotifyTo
This required element MUST contain the endpoint reference to which event messages
should be sent for this subscription.

wse:Delivery/wsman:MaxElements
This optional element MAY contain a positive integer that indicates the maximum
number of event bodies to batch into a single SOAP envelope. The Resource MUST NOT
deliver more than this number of items in a single delivery, although it MAY deliver
fewer.

wse:Delivery/wsman:MaxEnvelopeSize
This optional element MAY contain a positiveInteger that indicates the maximum number
of octets in the SOAP envelope used to deliver the events. Note that
wsman:MaxEnvelopeSize only applies to the response to the current message
(wse:Subscribe) and does not apply to the resulting delivery stream of a subscription.

wsman:MaxEnvelopeSize/@Policy

An OPTIONAL attribute with one of the following enumeration values:

(a) CancelSubscription, meaning to cancel on the first oversized events.

(b) Skip, meaning to silently skip oversized events.

(c) Notify, meaning to notify the subscriber that events were dropped as specified in
7.9.

wse:Delivery/wsman:MaxTime
This optional element MAY contain a duration that indicates the maximum amount of
time the SERVICE should allow to elapse while batching EVENT bodies. That is, this time
may not be exceeded between the encoding of the first event in the batch and the
dispatching of the batch for delivery.Some publisher implementations may choose more
complex schemes in which different events included in the subscription are delivered at

 82

different latencies or at different priorities. In such cases, a specific filter dialect should
designed for the purpose and used to describe the instructions to the publisher. In such
cases, wsman:MaxTime can be omitted if it is not applicable, but if present, serves as an
override on anything defined within the filter.

Note that in the absence of any other instructions in any part of the subscription, services
should deliver notifications of dropped events to subscribers, as specified in 7.9.

If a client is interested in discovering the appropriate values for wsman:MaxElements or
wsman:MaxEnvelopeSize, the client should query for service-specific metadata. The format
of such metadata is beyond the scope of this particular specification.

R7.2.12-2: If Batched mode is requested in a Subscribe message, and none of
MaxElements, MaxEnvelopeSize, and MaxTime are present, the service
may pick any applicable defaults. The following faults apply:

a) wman:Unsupported with a fault detail code of
wsman:faultDetail/MaxElements if MaxElements is not supported or is
excessive.

b) wman:Unsupported with a fault detail code of
wsman:faultDetail/MaxEnvelopeSIze if it is not supported or is
excessive.

c) wman:Unsupported with a fault detail code of
wsman:faultDetail/MaxTime if MaxTime is not supported or is
excessive.

d) wman:Unsupported with a fault detail code of
wsman:faultDetail/MaxEnvelopePolicy if MaxEnvelopeSize/@Policy is
not supported.

R7.2.12-3: If wsman:MaxEnvelopeSize is requested, the service MUST NOT send an
event body which is larger than the specified limit. The default behavior is
to notify the subscriber as specified in 7.9 unless otherwise instructed in the
subscription and attempt to continue delivery. If the event exceeds any
internal default maximums, the service SHOULD also attempt to notify as
specified in 7.9 rather than terminate the subscription unless otherwise
specified in the subscription.

If a subscription has been created using Batched mode, all event delivery messages MUST
have the following format:

(9) <s:Envelope ...>
(10) <s:Header>

(11) ...

(12) <wsa:Action>

(13) http://schemas.xmlsoap.org/ws/2005/06/management/Events

(14) </wsa:Action>

(15) ...

(16) </s:Header>

(17) <s:Body>

 83

(18) <wsman:Events>

(19) <wsman:Event Action="event action URI"> +

(20) ...event body...

(21) </wsman:Event>

(22) </wsman:Events>

(23) </s:Body>

(24) </s:Envelope>

s:Envelope/s:Header/wsa:Action
MUST be http://schemas.xmlsoap.org/ws/2005/06/management/Events.

s:Envelope/s:Body/wsman:Events/wsman:Event
Each of these required elements MUST contain the body of the corresponding event
message, as if wsman:Event were the s:Body element.

s:Envelope/s:Body/wsman:Events/wsman:Event/@Action
This required attribute MUST contain the Action URI that would have been used for the
contained event message.

R7.2.12-4: If Batched mode is requested, deliveries MUST be acknowledged as
described in 7.7.

Dropped events (as specified in 7.9) are encoded along with any other events.

The following example shows batching parameters supplied to a wse:Subscribe operation.
The service is instructed to send no more than 10 items per batch, to wait no more than 20
seconds between the time the first event is encoded until the entire batch is dispatched, and
to include no more than 8192 octets in the SOAP message:

(25) ...

(26) <wse:Delivery

(27) Mode="http://schemas.xmlsoap.org/ws/2005/06/management/Events">

(28) <wse:NotifyTo>

(29) <wsa:Address>http://2.3.4.5/client</wsa:Address>

(30) </wse:NotifyTo>

(31) <wsman:MaxElements>10</wsman:MaxElements>

(32) <wsman:MaxTime>PT20S</wsman:MaxTime>

(33) <wsman:MaxEnvelopeSize>8192</wsman:MaxEnvelopeSize>

(34) </wse:Delivery>

(35)

The following example shows an example of batched delivery that conforms to this
specification:

(36) <s:Envelope

(37) xmlns:s="http://www.w3.org/2003/05/soap-envelope"

(38) xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing

(39) xmlns:wsman="http://schemas.xmlsoap.org/ws/2005/06/management"

(40) xmlns:wse="http://schemas.xmlsoap.org/ws/2004/09/eventing">

(41) <s:Header>

(42) <wsa:To s:mustUnderstand="true">http://2.3.4.5/client</wsa:To>

 84

(43) <wsa:Action>

(44) http://schemas.xmlsoap.org/ws/2005/06/management/Events

(45) </wsa:Action>

(46) ...

(47) </s:Header>

(48) <s:Body>

(49) <wsman:Events>

(50) <wsman:Event

(51) Action="http://schemas.xmlsoap.org/2005/02/diskspacechange">

(52) <DiskChange

(53) xmlns="http://schemas.xmlsoap.org/2005/02/diskspacechange">

(54) <Drive> C: </Drive>

(55) <FreeSpace> 802012911 </FreeSpace>

(56) </DiskChange>

(57) </wsman:Event>

(58) <wsman:Event

(59) Action="http://schemas.xmlsoap.org/2005/02/diskspacechange">

(60) <DiskChange

(61) xmlns="http://schemas.xmlsoap.org/2005/02/diskspacechange">

(62) <Drive> D: </Drive>

(63) <FreeSpace> 1402012913 </FreeSpace>

(64) </DiskChange>

(65) </wsman:Event>

(66) </wsman:Events>

(67) </s:Body>

(68) </s:Envelope>

Note the use of the generic Action in line 40 which specifies that this is a batch containing
distinct events. The individual event bodies are at lines 48-52 and lines 56-60. Note that
actual Action attribute for the individual events is an attribute of the wsman:Event wrapper.

7.2.13 Pull Delivery Mode
In some circumstances, polling for events is an effective way of controlling data flow and
balancing timeliness against processing ability. And in some cases, network restrictions
prevent "push" modes from being used; the service cannot initiate a connection to the
subscriber.

WS-Management defines a custom event delivery mode, "pull mode", which allows an event
source to maintain a logical queue of event messages that are received by enumeration. For
this delivery mode, the wse:Delivery element has the following format:

(1)
(2) <wse:Delivery Mode="http://schemas.xmlsoap.org/ws/2005/06/management/Pull">
(3) ...
(4) </wse:Delivery>
(5)

The following describes additional, normative constraints on the outline listed above:

wse:Delivery/@Mode
MUST be "http://schemas.xmlsoap.org/ws/2005/06/management/Pull".

 85

R7.2.13-1: A service is NOT REQUIRED to support the
http://schemas.xmlsoap.org/ws/2005/06/management/Pull delivery mode. If
requested and not supported, the service MUST return a fault of
wse:DeliveryModeRequestedUnavailable.

Note that wsman:MaxElements, wsman:MaxEnvelopeSize, and wsman:MaxTime do not
apply in the wse:Subscribe message when using this delivery mode, as the wsen:Pull
message contains all of the necessary functionality for controlling the batching and timing of
the responses.

R7.2.13-2: If a subscription incorrectly specifies parameters that are not compatible
with "Pull Mode", then the service SHOULD issue a
wsman:UnsupportedFeature fault with a detail code of
wsman:faultDetail/FormatMismatch.

R7.2.13-3: If Pull mode is requested in a Subscribe message and the event source
accepts the subscription request, the SubscribeResponse element in the
REPLY message MUST contain a wsen:EnumerationContext element
suitable for use in a subsequent wsen:Pull operation:

(6) <s:Body ...>
(7) <wse:SubscribeResponse ...>
(8) <wse:SubscriptionManager>
(9) wsa:EndpointReferenceType
(10) </wse:SubscriptionManager>

(11) <wse:Expires>[xs:dateTime | xs:duration]</wse:Expires>

(12) <wsen:EnumerationContext>...</wsen:EnumerationContext>

(13) ...

(14) </wse:SubscribeResponse>

(15) </s:Body>

The subscriber extracts the wsen:EnumerationContext and uses it thereafter in wsen:Pull
requests.

R7.2.13-4: If Pull mode is active, wsen:Pull messages MUST contain the EPR of the
subscription manager obtained from the wse:SubscribeResponse message.
The EPR reference properties and parameters are of a service-specific
format, but may be of the WS-Management common endpoint reference
model if it is suitable.

R7.2.13-5: If Pull mode is active, and wsen:Pull request returns no events (because
none have occurred since the last 'pull'), the service SHOULD return a
wsman:TimedOut fault. The wsen:EnumerationContext is still considered
active and the subscriber may continue to issue wsen:Pull requests with the
most recent wsen:EnumerationContext for which event deliveries actually
occurred.

R7.2.13-6: If Pull mode is active, and wsen:Pull request returns events, the service
MUST return an updated wsen:EnumerationContext as specified for
wsen:Pull, and the subscriber is expected to use the update in the
subsequent wsen:Pull, as specified for WS-Enumeration. Bookmarks, if
active, may also be returned in the header and must also be updated by the
service.

 86

In practice, the service may not in fact change the EnumerationContext, but the client
should not count on it remaining constant. It is conceptually updated, whether in reality or
not.

Note that in pull mode, the wsen:Pull request controls the batching. If no defaults are
specfied, the batch size is 1 and the maximum envelope size and timeouts are service-
defined.

R7.2.13-7: If Pull mode is active, the service MUST NOT return a
wsen:EndOfSequence element in the event stream, as there is no concept
of a "last event". Rather, the enumeration context should become invalid if
the subscription expires or is canceled for any reason.

R7.2.13-8: If Pull mode is used, the service MUST accept the
wsman:MaxEnvelopeSize used in the wsen:Pull as the limitation on the
event size that can be delivered.

Note that the batching properties used in 'batched' mode do not apply to ''pull"mode. The
client controls the maximum event size using the normal mechanisms in wsen:Pull.

7.3 GetStatus
This message is optional for WS-Management.

R7.3-1: A conformant service is NOT REQUIRED to implement the GetStatus
message or its response. It is NOT RECOMMENDED that services
implement this for future compatibility.

If implemented, WS-Management adds no new information to the request or response
beyond that defined in WS-Eventing. It is recommended that Heartbeat support be
implemented rather than GetStatus.

7.4 Unsubscribe
Unsubscribe cancels a subscription.

R7.4-1: If a service supports wse:Subscribe, it MUST implement the Unsubscribe
message and ensure that event delivery will be terminated if the message is
accepted as valid. It is NOT REQUIRED that the service stop event flow
prior to responding to the Unsubscribe message as an atomic operation,
only that the event traffic stops at some point.

R7.4-2: A service MAY unilaterally cancel a subscription for any reason, including
internal timeouts, reconfiguration, or unreliable connectivity.

Note that clients must be prepared to receive any events already in transit even though
they have issued a wse:Unsubscribe message. Clients may fault any such deliveries or
accept them, at their option.

 87

Note that the EPR to use for this message was received fom the wse:SubscribeResponse in
the wse:SubscriptionManager element.

7.5 Renew
According to WS-Eventing, the wse:Renew message is not optional in terms of processing,
but there is no requirement that it actually must succeed.

R7.5-1: While a service MUST support the wse:Renew message in terms of
accepting it as a valid action, a conformant service MAY always fault the
request with a wse:UnableToRenew fault, forcing the client to simply
subscribe from scratch.

Renew has no effect on deliveries in progress, bookmarks, heartbeats or other ongoing
activity. It simply extends the lifetime of the subscription.

Note that the EPR to use for this message was received fom the wse:SubscribeResponse in
the wse:SubscriptionManager element.

7.6 SubscriptionEnd
This message is optional for WS-Management. In effect, it is the "last event" for a
subscription. Since its primary purpose is to warn a subscriber that a subscription has
ended, it is not really suitable for use with "Pull" mode delivery.

R7.6-1: A conformant service is NOT REQUIRED to implement the SubscriptionEnd
message. If implemented, the service MAY fail to accept a subscription
with any address differing from the NotifyTo address.

R7.6-2: A conformant service MUST NOT implement the SubscriptionEnd when
event delivery is done using Pull mode as defined in 7.2.12.

R7.6-3: If SubscriptionEnd is supported, the message MUST contain any reference
properties or parameters specified by the subscriber in the EndTo address
in the original subscription.

R7.6-4: If SubscriptionEnd is supported, it is RECOMMENDED that it be sent to the
subscriber prior to sending the UnsubscribeResponse.

If the service delivers events over the same connection as the wse:Subscribe operation, the
client typically knows that a subscription has been terminated, since the connection itself
will close or terminate.

When the delivery connection is distinct from the subscribe connection, a SubscriptionEnd
message is highly recommended, or else the client has no immediate way of knowing that a
subscription is no longer active.

 88

7.7 Acknowledgement of Delivery
In order to ensure delivery is acknowledged at the application level, the original subscription
may request that the subscriber physically acknowledge event deliveries, rather than relying
entirely on transport-level guarantees.

In other words, the transport may have accepted delivery of the events but not forwarded
them to the actual subscriber process, and the service would move on to the next set of
events. System failures might result in dropped events. Therefore, there needs to be a
mechanism in which a message-level acknowledgement can occur. This allows
acknowledgement to be pushed up to the application level, increasing the reliability of event
deliveries.

The client selects acknowledged delivery by selecting a delivery mode in which each event
has a response. In this specification, the two acknowledged delivery modes are:

• http://schemas.xmlsoap.org/ws/2005/06/management/PushWithAck

• http://schemas.xmlsoap.org/ws/2005/06/management/Events

R7.7-1: A conformant service is NOT REQUIRED to support any specific delivery
mode. However, if either of the above delivery modes is requested, the
service MUST wait for the acknowledgement from the client before
delivering the next event or events which match the subscription to maintain
an ordered queue of events.

R7.7-2: If an acknowleged delivery mode is selected for the subscription, the service
MUST include the following SOAP headers in each event delivery:

(1) <s:Header>
(2) <wsa:ReplyTo> where to send the acknowledgement </wsa:ReplyTo>
(3) <wsman:AckRequested/>

wsa:ReplyTo
This will always be present in the event delivery as a consequence of the
wsman:AckRequested. The client must extract this address and send the
acknowledgement to the specified EPR.

wsman:AckRequested
No content. This requires that the subscriber acknowledge all deliveries as described
below.

The client must then reply to the delivery with an acknowledgment or a fault.

R7.7-3: If a service requests acknowledgement of receipt by using the
wsman:AckRequested block, the receiver MUST acknowledge the receipt
by replying with an
http://schemas.xmlsoap.org/ws/2005/06/management/Ack message. If
this message is not received as a reply, the service MAY terminate the
subscription immediately. The acknowledgment message format is
identical for all delivery modes. It contains a unique wsa:Action, and MUST
contain the event the wsa:RelatesTo field set to the MessageID of the event
delivery to which it applies:

 89

(4)
(5) <s:Envelope ...>
(6) <s:Headers>
(7) ...
(8) <wsa:To> endpoint reference from the event delivery ReplyTo field </wsa:To>
(9) <wsa:Action> http://schemas.xmlsoap.org/ws/2005/06/management/Ack </wsa:Action>
(10) <wsa:RelatesTo> message ID of original event delivery </wsa:RelatesTo>

(11) ...

(12) </s:Header>

(13) <s:Body/>

(14) </s:Envelope>

The following describes additional, normative constraints on the outline listed above:

s:Envelope/s:Header/wsa:Action
MUST be http://schemas.xmlsoap.org/ws/2005/06/management/Ack.

s:Envelope/s:Header/wsa:RelatesTo
This MUST contain the wsa:MessageID of the event delivery to which it refers.

s:Envelope/s:Header/wsa:To
The endpoint reference address extracted from the ReplyTo field in the event delivery.
All reference properties and reference parameters must be extracted and added to the
SOAP header as well.

Note that wsa:RelatesTo may not be omitted as it is the critical item which ensures that the
correct delivery is being acknowledged.

In spite of the request to acknowledge, the client may refuse delivery with a fault or fail to
respond with the acknowledgement. In this case the service should terminate the
subscription and send any applicable SubscriptionEnd messages.

If the client does not support acknowledgement, it may respond with a
wsman:UnsupportedFeature fault with a detail code wsman:faultDetail/Ack.

However, this is as difficult as acknowledging the delivery, so most clients should scan for
the wsman:AckRequested field and be prepared to acknowledge delivery or fault it.

Note that with simple "Push" mode, there is no way for the client to fault a delivery or
acknowledge it.

7.8 Refusal of Delivery
With all acknowledged delivery modes as described in 7.7, a subscriber may refuse to take
delivery of events, either for security reasons or a policy change. It then responds with a
fault rather than an acknowledgement.

In this case, the service must be prepared to end the subscription even though a
wse:Unsubscribe message is not issued by the subscriber.

R7.8-1: During event delivery, if the receiver faults the delivery with a
wsman:DeliveryRefused fault, the service MUST immediately cancel the
subscription and MAY also issue a wse:SubscriptionEnd message to the
wse:EndTo endpoint in the original subscription if supported.

 90

Thus, the receiver MAY issue the fault in as a technique for canceling the subscription when
it does not have the wse:SubscriptionManager information.

7.9 Dropped Events
Events which cannot be delivered should not be silently dropped from the event stream, or
the subscriber gets a false picture of the event history. WS-Management defines three
behaviors for events which cannot be delivered via "Push" modes or which are too large to
fit within the delivery constraints requested by the subscriber:

a) Terminate the subscription

b) Silently skip such events
c) Send a special event in place of the dropped event(s)

These options are discussed in 7.2.10 and 7.2.11

During delivery, the service may have to drop events for a number of reasons: they exceed
the maximum size requested by the subscriber, or the client cannot keep up with the event
flow and there is a backlog, or the service may have been reconfigured or restarted and the
events permanently lost. In these cases, a service should inform the client that events have
been dropped.

R7.9-1: If a service drops events, it SHOULD issue an
http://schemas.xmlsoap.org/ws/2005/06/management/DroppedEvents
event which indicates this to the client. Any reference properties or
reference parameters which were specified in the wsa:NotifyTo address in
the subscripton MUST also be copied into this message. This is a normal
event and implicitly considered part of any subscription.

R7.9-2: If an
http://schemas.xmlsoap.org/ws/2005/06/management/DroppedEvents
event is issued, it MUST take the ordinal position of the original dropped
event in the delivery stream. If "batched" delivery mode is in use, the event
takes the place in the batch of the event it represents.

Note that this event is considered the same as any other event with regard to its location
and other behavior (bookmarks, acknowledged delivery, location in batch, etc.). It simply
takes the place of the dropped event.

(15) <s:Envelope ...>

(16) <s:Header>

(17) ...subscriber endpoint-reference...

(18)

(19) <wsa:Action>

(20) http://schemas.xmlsoap.org/ws/2005/06/management/DroppedEvents

(21) </wsa:Action>

(22) </s:Header>

(23) <s:Body>

 91

(24) <wsman:DroppedEvents Action="wsa:Action URI of dropped event">

(25) xs:int

(26) </wsman:DroppedEvents>

(27) ...

(28) </s:Body>

(29) </s:Envelope>

The following describes additional, normative constraints on the outline listed above:

s:Envelope/s:Header/wsa:Action
MUST be http://schemas.xmlsoap.org/ws/2005/06/management/DroppedEvents.

s:Body/wsman:DroppedEvents/@Action

 The Action URI of the event which was dropped.

s:Body/wsman:DroppedEvents

 A positive integer which represents the total number of dropped events since the
subscription was created.

Note that wse:Renew has no effect on the running total of dropped events. Dropped events
are like any other events and may require acknowledgement, affect the bookmark location,
and so on.

Here is an example of how a dropped event would appear in the middle of a batched event
delivery:

(30)

(31) <wsman:Events>

(32) <wsman:Event Action="https://foo.com/someEvent">

(33) ...event body

(34) </wsman:Event>

(35) <wsman:Event Action="http://schemas.xmlsoap.org/ws/2005/06/management/DroppedEvents">

(36) <wsman:DroppedEvents Action="https://foo.com/someEvent"> 1 </wsman:DroppedEvents>

(37) </wsman:Event>

(38) <wsman:Event Action="https://foo.com/someEvent">

(39) ...event body

(40) </wsman:Event>

Note that the dropped event is an event in itself.

R7.9-3: If a service cannot deliver an event and does not support the
http://schemas.xmlsoap.org/ws/2005/06/management/DroppedEvents
event, it SHOULD terminate the subscription rather than silently skipping
events.

Since this cannot be enforced and some dropped events are irrelevant when replaced by a
subsequent event (running totals, for example), it is not a firm requirement that dropped
events are signaled or that they result in a termination of the subscription.

8.0 Metadata and Discovery
The WS-Management protocol does not mandate or define any techniques for discovery of

 92

resources available through a service.

Typically, the client may need to list available resources, obtain XML schemas or WSDL
definitions, or perform other discovery tasks.

WS-Management is compatible with WS-MetadataExchange and WS-Discovery for such
tasks, but this specification does not mandate any specific usage or metadata formats to
interoperate with these specifications.

This philosophy allows WS-Management as a protocol to evolve independently of any
metadata formats and discovery techniques and allows a service to be WS-Management-
compliant while exposing its own required forms of metadata and discovery.

9.0 Security

9.1 Introduction
In general, management operations and responses should be protected against attacks such
as snooping, interception, replay, and modification during transmission. Generally, it is also
necessary to authenticate the user who has sent a request in order to apply access control
rules to determine whether or not to process a request.

This specification establishes the minimum interoperation standards and predefined profiles
using transport-level security.

This approach provides the best balance of simplicity of implementation (HTTP and HTTPS
stacks are readily available, even for hardware) and the security mechanisms sit in front of
any SOAP message processing, limiting the attack surface.

It is expected that more sophisticated transport and SOAP-level profiles will be defined and
used, published separately from this specification.

Implementations which expect to interoperate should adopt one or more of the transport
and security models defined in this chapter and are free to define any additional profiles
under different URI-based designators.

9.2 Security Profiles
For this specification a profile is any arbitrary mix of transport or SOAP behavior which
describes a common security need. In some cases, the profile is defined for documentatin
and metadata purposes, but may not be part of the actual message exchange. Rather, it
describes the message exchange involved.

Discovery of which profiles are supported by the service should be done through metadata
retrieval and is beyond the scope of this particular specification.

For all of the predefined profiles, the transport is responsible for all message integrity,
protection, authentication and security.

The authentication profiles are used for descriptive and metadata purposes and do not
actually show up in the SOAP traffic with the exception of the wse:Subscribe message when
using any delivery mode which causes a new connection to be created from the publisher to
the subscriber (push and batched modes, for example). When a subscription is created, the

 93

authentication technique to be used at event-delivery needs to be specified by the
subscriber, since the subscriber will have to authenticate the service (acting as publisher) at
event-time.

9.3 Interoperation Conformance
This specification does not mandate that conformant services must provide HTTP or HTTPS
based access. However, it does mandate that if HTTP or HTTPS is used, at least one of the
predefined profiles for that transport must be supported so that clients can reliably access
the service.

R9.3-1: A conformant service which supports HTTP MUST support one of the
predefined HTTP-based profiles.

R9.3-2: A conformant service which supports HTTPS MUST support one of the
predefined HTTPS-based profiles.

R9.3-3: A conformant service MUST NOT expose WS-Management over a
completely unauthenticated HTTP channel.

.
There is no requirement that the service only export a single HTTP or HTTPS address. The
service may export multiple addresses, each of which supports a specific security profile or
multiple profiles.

If clients support all of the predefined profiles, they are assured of access to a WS-
Management implementation which supports HTTP and/or HTTPS.

A special note regarding the use of IPSec should be made. While HTTP with Basic
authentication is weak on an unsecured network, if IPSec is in use, this is no longer an
issue. IPSec provides high-quality cryptographic security, data origin authentication, and
anti-replay services.

The use of HTTP Basic authentication when the traffic is being carried over a network
secured by IPSec is intrinsically safe from the network perspective and equivalent to using
HTTPS with server-side certificates. For example, the use of the wsman security profile
wsman:secprofile/https/mutual/rechallenge (using HTTPS) is equivalent to using
simple wsman:secprofile/http/basic or wsman:secprofile/http/digest if the traffic is
actually secured by IPSec. Because IPSec is intended for machine-level authentication and
network traffic protection, it is insufficient in many cases real-world management, which
may require additional authentication of specific users in order to authorize access to
management resources. IPSec needs to be used in conjunction with one of the profiles in
this section for the purposes of user-level authentication. However, it obviates the need for
HTTPS-based traffic and allows safe use of HTTP-based profiles.

9.4 wsman:secprofile/http/basic
This essentially the 'standard' profile, but limited to the use of Basic authentication.

The typical sequence is:

 94

 Client Service

1 Client connects with no auth
header

 Service sees no header

2 Service sends 401, listing Basic as
the auth mode.

3 Client provides Basic
authorization header

 Service authenticates the client

This is the normal behavior for HTTP. If the client connects with a Basic authorization
header initially and it is valid, then of course the request immediately succeeds.

Basic authentication is not recommended for unsecured transports. If used with HTTP
alone, for example, the transmission of the password constitutes a security risk. However, if
the HTTP transport is secured with IPSec, for example, then the risk is substantially
reduced.

Similarly, Basic authentication is suitable when performing testing, prototyping, or
diagnosis.

9.5 wsman:secprofile/http/digest
This essentially the same as the 'standard' profile, but limited to the use of Digest
authentication.

The typical sequence is:

 Client Service

1 Client connects with no auth
header

 Service sees no header

2 Service sends 401, listing Digest as
the auth mode.

3 Client provides Digest
authorization header

4 Service begins auth sequence of
secure token exchange

 Client continues auth
sequence....

 Service authenticates client

This is the normal behavior for HTTP. If the client connects with a Digest authorization
header initially and it is valid, then the token exchange sequence begins.

 95

9.6 wsman:secprofile/https/basic
This profile establishes the use of Basic authentication over HTTPS. This is used when only
a server-side certificate is in use to encrypt the connection, but the service still needs to
authenticate the client.

The typical sequence is:

 Client Service

1 Client connects with no auth
header using HTTPS

 Service sees no header, but
establishes an encrypted connection

2 Service sends 401, listing Basic as
the auth mode.

3 Client provides Basic
authorization header

 Service authenticates the client

If the client connects with a Basic authorization header initially and it is valid, then of course
the request immediately succeeds.

9.7 wsman:secprofile/https/digest
This profile establishes the use of Digest authentication over HTTPS. This is used when only
a server-side certificate is in use to encrypt the connection, but the service still needs to
authenticate the client.

The typical sequence is:

 Client Service

1 Client connects with no auth
header using HTTPS

 Service sees no header, but
establishes an encrypted connection

2 Service sends 401, listing Digest as
the auth mode.

3 Client provides Digest
authorization header

4 Service begins auth sequence of
secure token exchange

 Client continues auth
sequence....

 Service authenticates client

This is the normal behavior for HTTP. If the client connects with a Digest authorization
header initially and it is valid, then the token exchange sequence begins.

 96

9.8 wsman:secprofile/https/mutual
In this security mode, the client supplies an X.509 certificate and it is used to authenticate
the client. No HTTP(S) authorization header is required in the HTTP POST request.

However, as a hint to the service, the following HTTP(S) authorization header may be
present:
Authorization: wsman:secprofile/https/mutual

However, since the service can be configured to always look for the certificate, this is not
required.

The sequence is simple:

 Client Service

1 Client connects with no auth
header but supplies an X.509
cert

 Service ignores the authorization
header and retrieves the client-side
cert used in the TLS 1.0 handshake

2 Service accept access, or denies
access with 403.7 or 403.16, etc.

9.9 wsman:secprofile/https/mutual/basic
In this profile, the wsman:secprofile/https/mutual profile is used first to authenticate both
sides using X.509 certificates. Further, individual operations are subsequently
authenticated using HTTP Basic Authorization headers.

This profile is used to authenticate both the client and service initially and to provide one
level of security, typically at the machine or device level. The second level of authentication
is typically used to perform authorization for specific operations, althought it may act as a
simple secondary authentication mechanism with no authorization semantics.

 Client Service

1 Client connects with cert and
special auth header

 Service queries for client cert and
authenticates. If cert is missing or
invalid, the sequence stops here with
403.7 or 403.16 return codes.

2 After authenticating the certificate,
the service sends 401, listing
available Basic auth mode as a
requirement

 97

3 Client selects Basic as the
auth mode to use and
includes it in the
Authorization header, as
defined for HTTP 1.1

 Service authenticates the client again
before performing the operation

In the initial request, the HTTPS authorization header MUST be
Authorization: wsman:secprofile/https/mutual/basic

This indicates to the service that this special mode is in use and it can query for the client
certificate and ensure that subsequent requests are properly challenged for Basic
authorization if the HTTP Authorization is header is missing from a request.

The Authorization header is as for normal HTTP basic in
Authorization: Basic ...user/password encoding

This use of Basic Authentication is secure (unlike its normal use in HTTP), since the
transmission of the username and password is performed over a TLS 1.0 encrypted
connection.

9.10 wsman:secprofile/https/mutual/digest
This is the same as wsman:secprofile/https/mutual/basic, except that the HTTP Digest
authentication model is used after the initial X.509 certificate-based mutual authentication
is completed.

In the initial request, the HTTPS authorization header MUST be
Authorization: wsman:secprofile/https/mutual/digest

9.11 wsman:secprofile/https/spnego-kerberos
In this profile, the client connects to the server using HTTPS with only server-side
certificates to encrypt the connection.

Authentication is then carried out based on the internet informational draft [Reference
22], which describes the use of GSSAPI SPNEGO over HTTP. This mechanism allows HTTP
to carry out the negotiation protocol of RFC 2478 to authenticate the user based on
Kerberos Version 5.

 Client Service

1 Client connects with no auth
header using HTTPS

 Service sees no header, but
establishes an encrypted connection

2 Service sends 401, listing Negotiate
as an available HTTP authentication
mechanism.

3 Client uses the referenced
Internet draft to start a

 ...

 98

SPNEGO sequence to
negotiate for Kerberos V5

4 ... Service engages in SPNEGO sequence
to authenticate client using Kerberos
V5

5 Client is authenticated Service authenticates client

9.12 wsman:secprofile/https/mutual/spnego-
kerberos

This mode is the same as wsman:secprofile/https/spnego-kerberos except that the server
and client mutually authenticate one another at the TLS layer prior to beginning the
Kerberos authentication sequence. See [22] for details.

 Client Service

1 Client connects with no auth
header using HTTPS

 Service queries for client cert and
authenticates. If cert is missing or
invalid, the sequence stops here with
403.7 or 403.16 return codes

2 After doing the mutual certificate
authentication sequence, service
sends 401, listing Negotiate as an
available HTTP authentication
mechanism.

3 Client uses the referenced
Internet draft to start a
SPNEGO sequence to
negotiate for Kerberos V5

 ...

4 ... Service engages in SPNEGO sequence
to authenticate client using Kerberos
V5

5 Client is authenticated Service authenticates client

This is typically used to mutually authenticate devices or machines, and then subsequently
perform user- or role-based authentication.

 99

9.13 wsman:secprofile/http/spnego-kerberos
This is the same as wsman:secprofile/https/spnego-kerberos except that it is performed
over an HTTP connection. See [22] for details.

While this profile supports secure authentication, because is not encrypted, it represents
security risks such as information disclosure, as the SOAP traffic is in plaintext. It should
not be used in environments with a requirement for a high level of security.

9.14 Subscriptions
When specifying the wse:NotifyTo address in subscriptions, it is often important to give
hints to the service as to which authentication model to use when delivering the event.

If no hints are present, then it is assumed that the service can simply infer from the wsa:To
address what needs to be done. However, if the service can support multiple modes and
has a certificate or password store, it may not know which authentication model to choose
or which credentials to use without being told in the subscription.

Because of the wide variety of capabilites of services, there is no mechanism defined at the
message level for negotiating which security profiles may be supported by the service.
Instead, the service should export metadata which describes the available options. The
format of such metadata is beyond the scope of this particular specification.

WS-Management defines an additional field in the wse:Delivery block which can
communicate authentication information:

(1) <s:Body>
(2) <wse:Subscribe>
(3) <wse:Delivery>
(4) <wse:NotifyTo> address </wse:NotifyTo>
(5) <wsman:Auth Profile="authentication-profile-URI"/>
(6)

The following describes additional, normative constraints on the outline listed above:

wsman:Auth
This block contains authentication information to be used by the service (acting as
publisher) when authenticating to the subscriber (the client) at event delivery time. This
block contains a simple string which encodes a token to be used. The format of the
token is indicated by the Profile attribute.

wsman:Auth/@Profile
A URI which indicates which security profile to use when making the connection to
deliver events.

If the wsman:Auth block is not present, then the service must infer what to do by using the
wse:NotifyTo address using any preconfigured policy or settings it has available. If it is
present and no security-related tokens are communicated, the service must know which
credentials to use by its own internal configuration.

For example, if the service is already configured to use a specific certificate when delivering

 100

events, the subscriber can request standard mutual authentication:

(7) <s:Body>
(8) <wse:Subscribe>
(9) <wse:Delivery>
(10) <wse:NotifyTo> HTTPS address </wse:NotifyTo>

(11) <wsman:Auth Profile="wsman:secprofile/https/mutual"/>

Similarly, if the service knows how to retrieve a proper username and password for event
delivery, simple HTTP basic or digest authentication can be used:

(12) <s:Body>

(13) <wse:Subscribe>

(14) <wse:Delivery>

(15) <wse:NotifyTo> HTTP address </wse:NotifyTo>

(16) <wsman:Auth Profile="wsman:secprofile/http/digest"/>

There is no requirement that the service support any specific profile. The rest of this
section defines special-case profiles for event delivery in which the service needs additional
information in order to select the proper credentials to use when delivering events.

9.15 Including Credentials with a Subscription
In addition to specifying the authentication profile using the wsman:Auth block, the
subscriber may wish to send additional tokens to indicate to the service which credentials to
use when making the connection to deliver events. As specified in the previous section, if
no tokens are specified, the service must be preconfigured to know which credentials to use.
However, the service may require that the client supply partial or full credentials with the
subscription to use later when making the connection to deliver the events.

The communication of credentials is independent of the authentication mode communicated
in the wsman:Auth block. Clearly, the same username, password, or certificate identity
could be used with a variety of transports.

Standard communication of credentials is done using a WS-Trust wst:IssuedTokens header
block as defined in section 6.4 of the WS-Trust specification. Use of WS-Trust for this
purpose helps to assure interoperation of secured event delivery. Using other mechanisms
introduces implementation-specific behavior and makes it difficult to write compatible client-
side implementations.

In the following example, the user name token is conveyed in the headers to the
wse:Subscribe message in a wst:IssuedTokens block (line 9-27):

(1) <s:Envelope ...
(2) xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
(3) xmlns:wst="http://schemas.xmlsoap.org/ws/2005/02/trust">
(4)
(5) <s:Header ...>
(6) <wsa:Action>
(7) http://schemas.xmlsoap.org/ws/2004/08/eventing/Subscribe
(8) </wsa:Action>
(9) ...

 101

(10) <wst:IssuedTokens mustUnderstand="true">

(11) <wst:RequestSecurityTokenResponse>

(12) <wst:TokenType>

(13) http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-

(14) 1.0#UsernameToken

(15) </wst:TokenType>

(16)

(17) <wst:RequestedSecurityToken>

(18) <wsse:UsernameToken>

(19) <wsse:Username>JoeUser</wsse:Username>

(20) </wsse:UsernameToken>

(21) </wst:RequestedSecurityToken>

(22)

(23) <wsp:AppliesTo>

(24) <wsa:EndpointReference><!-- NotifyTo EPR -->

(25) <wsa:Address><!-- address of event sink --></wsa:Address>

(26) </wsa:EndpointReference>

(27) </wsp:AppliesTo>

(28) </wst:RequestSecurityTokenResponse>

(29) </wst:IssuedTokens>

(30)

(31) </s:Header>

(32) <s:Body ...>

(33) <wse:Subscribe ...>

(34) <wse:Delivery>

(35) <wse:NotifyTo> ... </wse:NotifyTo>

(36) ...

(37) </wse:Delivery>

(38) ...

(39) </wse:Subscribe>

(40) </s:Body>

This wst:IssuedTokens block is divided into three sections:

• Indicating the type of token or credential being passed : The wst:TokenType wrapper
on lines 9-11. This may refer to user names, X.509 certificates or other token
types.

• The actual security token in a wst:RequestedSecurityToken wrapper (lines 13-17).

• What the tokens apply to, the wsp:AppliesTo block from WS-Policy. In this case, the
tokens apply to the wse:NotifyTo address in the subscription. The wse:NotifyTo EPR
and the wsp:Applies to MUST be identical.

Note that the wst:IssuedTokens block must have a SOAP mustUnderstand attribute.

The communication of tokens to the service for later use in event delivery connections is
independent of the security profile in use. Typically, the subscriber will pass one of the
following to the service using WS-Trust:

• A username reference (the service must know the password or other related
credentials and only uses the username as a hint to know which credential to use)

• An X.509 certificate identifier (thumbprint or 'hash'). The service has more than one

 102

certificate to use and needs to know which one.

• A username and password combination (rarely) which will be directly used to make
the connection in the other direction at event-time. This has security implications
and should not be delivered to the service over an unencrypted network transport.

• Some combination of the above token types (such as a username and a cookie).

These tokens are all intended for use at the transport level when making the connection and
do not appear in the SOAP messages. Other token types may be communicated as well, but
they are beyond the scope of this specification.

R9.16-1: Whenever a user name is communicated to the service, the following WS-
Trust usage SHOULD be observed. The wst:TokenType MUST be the
following URI:

(41)

(42) <wst:TokenType>

(43) http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-

1.0#UsernameToken

(44) <wst:/TokenType>

(45)

Additionally, the wst:RequestedSecurityToken must be a wsse:UsernameToken wich
contains the user name:

(46) <wst:RequestedSecurityToken>

(47) <wsse:UsernameToken>

(48) <wsse:Username>user-name/wsse:Username>

(49) </wsse:UsernameToken>

(50) </wst:RequestedSecurityToken>

(51)

The wsse:UsernameToken is defined in Web Services Security Username Token Profile
1.0 [20]. WS-Management does not require the use or presence of the other fields in
wsse:UsernameToken, although the implementation should return appropriate errors if
other fields are submitted and not supportd, such as wsse:Nonce.

The password may be optionally supplied in cleartext as specified in the above specification,
but is important that it be delivered over an encrypted transport:

(52) <wst:RequestedSecurityToken>

(53) <wsse:UsernameToken>

(54) <wsse:Username>user-name/wsse:Username>

(55) <wsse:Password>password</wsse:Password>

(56) </wsse:UsernameToken>

(57) </wst:RequestedSecurityToken>

R9.16-2: Whenever an X.509 certificate identity is communicated to the service, the
following WS-Trust usage SHOULD be observed. The wst:TokenType
MUST be the following URI:

(58)

 103

(59) <wst:TokenType>

(60) http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#x509v3

(61) <wst:/TokenType>

(62)

The wst:RequestedSecurityToken MUST be a wsse:BinarySecurityToken with a
ValueType of wsse:X509v3 using a standard encoding type of
wsse:Base64Binary:

(63) <wst:RequestedSecurityToken>

(64) <wsse:BinarySecurityToken

(65) ValueType=

(66) "http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#x509v3"

(67) EncodingType=

(68) "http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-

1.0#Base64Binary">

(69) MIEZzCCA9CgAwIBAgIQEmtJZc0BAgIQEmtJZc0

(70) </wsse:BinarySecurityToken>

(71) </wst:RequestedSecurityToken>

This token type is defined in the Web Services Security X.509 Certificate Token Profile
[21].

R9.16-3: A conformant service which accepts username, password, or X.509
certificate references within a wse:Subscribe message for later use in event
delivery MUST at least support the mechanisms in R9.15-1 and R9.15-2,
and MAY support any additional mechanisms.

While WS-Trust and the standard WS-Security profiles referenced above provide other
options and mechanisms, their use is optional and beyond the scope of this version of WS-
Management.

9.16 Correlation of Events with Subscription
In many cases, the subscriber will want to ensure that the event delivery corresponds to a
valid subscription that was issued by an authorized party. In this case, it is recommended
that reference parameters be introduced into the wse:NotifyTo definition.

For example, at subscription-time, a uuid could be supplied as a correlation token:

(1) <s:Body>
(2) <wse:Subscribe>
(3) <wse:Delivery>
(4) <wse:NotifyTo>
(5) <wsa:Address> address <wsa:Address>
(6) <wsa:ReferenceParameters>
(7) <MyNamespace:uuid> uuid:b0f685ec-e5c9-41b5-b91c-7f580419093e </MyNamespace:uuid>
(8) </wsa:ReferenceParameters>

 104

(9) </wse:NotifyTo>
(10) ...

This definition requires that the service include the MyNamespace:uuid value as a SOAP
header with each delivery (see 2.1). The service can use this to correlate the event with
any subscription that it issued and to validate its origin.

This is not a transport-level or SOAP-level authentication mechanism per se, but it does
help to maintain and synchronize valid lists of subscriptions and determine if the event
delivery is authorized or not, even though the connection itself may have been
authenticated.

This mechanism still may require the presence of the wsman:Auth block to specify which
security mechanism to use to actually authenticate the connection at event-time.

It is important that each new subscription receive at least one unique reference parameter
which is never reused, such as the illustrate uuid, in order for this mechanism to be of
value.

Other reference parameters may of course be present to help route and correlate the event
delivery as required by the subscriber.

9.17 Transport-Level Authentication Failure
Since transports typically go through their own authentication mechanisms prior to any
SOAP traffic occurring, the first attempt to connection may result in a transport-level
authentication failure. In such cases, SOAP faults will not occur, and the means of
communicating the denial to the client is implementation- and transport-specific.

10.0 Transports and Message Encoding

10.1 Introduction
While WS-Management is a SOAP protocol and not tied to a specific network transport,
interoperation requires the some common standards be established. This specification
centers on establishing common usage over HTTP 1.1 and HTTPS.

For identification and referencing, each transport is identified by a URI, and each
authentication mechanism defined in this specification is also identified by a URI.

As new transports are standardized, they should also acquire a URI for referencing
purposes, and any new authentication mechanisms that they expose should also be
assigned URIs for publication and identification purposes in XML documents.

For this specification, the standard transports are HTTP 1.1 and HTTPS (using TLS 1.),
designated as follows:

• http://www.ietf.org/rfc/rfc2616.txt (HTTP 1.1)

• http://www.ietf.org/rfc/rfc2818.txt (for HTTPS)

The SOAP and HTTP encoding models specified in the following base specifications are used

 105

for WS-Management encoding over HTTP and HTTPS:

1. SOAP Version 1.2 Part 2: Adjuncts, SOAP HTTP binding described in section 7 of

 http://www.w3.org/TR/2003/REC-soap12-part2-20030624/#soapinhttp

2. WS-I Basic Profile Version 1.1

 http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html

R10.1-1: A service SHOULD conform to any encoding requirements established by
the WS-I Basic Profile Version 1.1, in addition to any requirements
established in this specification.

This increase the probability of successful interoperation between implementations.

10.2 HTTP(S) Encoding
R10.2-1: A service MUST support Transfer-Encoding : chunked.

This requires the service to be able to receive incoming SOAP messages in several parts or
to be able to deliver them in several parts when they are very large or the size is unknown.
The limits are service-specific.

R10.2-2 A service MUST at least support the SOAP HTTP Binding.

R10.2-3: A service MUST at least implement the Responding SOAP Node of the
SOAP Request-Response Message Exchange Pattern
(http://www.w3.org/2003/05/soap/mep/request-response/).

R10.2-4 A service MAY choose not to implement the Responding SOAP Node of the
SOAP Response Message Exchange Pattern
(http://www.w3.org/2003/05/soap/mep/soap-response/).

R10.2-5: A service MAY choose not to support the SOAP Web Method Feature.

R10.2-6: A service MUST at least implement the Responding SOAP Node of an HTTP
one-way Message Exchange Pattern where the SOAP ENVELOPE is
carried in the HTTP Request and the HTTP Response has a Status Code of
202 Accepted and an empty Entity Body (no SOAP ENVELOPE).

This is used to carry SOAP messages which require no response.

R10.2-7: A service MUST at least support Request Message SOAP ENVELOPEs and
one-way SOAP ENVELOPEs that are delivered using HTTP POST.

R10.2-8: The HTTP(S) URL itself MUST contain the WS-Management ResourceURI
suffixed to the HTTP address in the same manner as used in the wsa:To
header as described in section 2.4.

Note this important requirement for HTTP(S) based access to WS-Management. While the
ResourceURI is also contained in the SOAP, it simplifies the implementation if the
ResourceURI can be copied to and from wsa:Address fields without modification or analysis.

R10.2-9: In cases where the service cannot respond with a SOAP message, the HTTP
error code 500 (Internal Server Error) SHOULD be returned and the client
side should close the connection.

R10.2-10: For services which support HTTPS (TLS 1.0), the service MUST at least

 106

implement TLS_RSA_WITH_RC4_128_SHA. It is RECOMMENDED that
the service also support TLS_RSA_WITH_AES_128_CBC_SHA.

R10.2-11: When delivering faults, an HTTP status code of 500 SHOULD be used in
the response for s:Receiver faults, and a code of 400 SHOULD be used for
s:Sender faults.

R10.2-12: It is NOT a REQUIREMENT that the URL used with the HTTP-POST
operation to deliver the SOAP message have the same content as the
wsa:To URI used in the SOAP addressing. Often, the HTTP URL will have
the same content as the wsa:To URI in the message, but may additionally
contain the wsman:ResourceURI suffixed to the network address using a
service-defined separator token sequence. It is RECOMMENDED that
services require only the wsa:To network address URL to promote uniform
client-side processing and behavior.

10.3 SOAP
R10.3-1: A SERVICE MUST at least receive and send SOAP 1.2 [SOAP 1.2] SOAP

ENVELOPEs.

R10.3-2: A SERVICE MAY reject a TEXT SOAP ENVELOPE with more than 32,767
octets.

R10.3-3: A SERVICE SHOULD NOT send a TEXT SOAP ENVELOPE with more than
32,767 octets in length unless the client has specified a
wsman:MaxEnvelopeSize header overriding this limit.

Large SOAP ENVELOPEs are expected to be serialized using attachments.

R10.3-4: Any REQUEST MESSAGE MAY be encoded using either UNICODE 3.0
(UTF-16) or UTF-8 encoding. An Service MUST accept either encoding for
all operations and emit RESPONSES using the same encoding as the
original request.

Some SOAP-enabled systems only have UNICODE available, and some only have UTF-8. To
maximize interoperation, it is trivial for a server to support both encodings, since R10.3-5
places limits on the required character set.

R10.3-5: A service IS REQUIRED to support characters from U+0000 to U+007F
inclusive with both UTF-8 and UTF-16 encodings, and MAY support
characters outside this range. If the message contains unsupported
characters above U+007F, the service MUST return a
wsman:EncodingLimit fault.

R10.3-6: For UTF-8 encodings, the service MAY fail to to process any message
beginning with the UTF-8 BOM (0xEF 0xBB 0xBF) at the beginning of the
message and MUST send UTF-8 responses without the BOM. The
presence of BOM in 8-bit characters encodings reduces interoperation.
Where extended characters are a requirement UTF-16 SHOULD be used.

Since the only required subrange is U+0000 to U+007F, it is trivial to support both UTF-16
and UTF-8 encoding for characters, since every other octet in the UNICODE UTF-16
character is a zero.

 107

R10.3-7: If UTF-16 is the encoding, the SERVICE MUST support either byte order
mark (BOM) U+FEFF (big-endian) or U+FFFE (little-endian) as defined in
the UNICODE 3.0 specification as the first character in the message.

 (See http://www.unicode.org/faq/utf_bom.html#BOM)

R10.3-8: Duplicate headers SHOULD NOT be processed. The service should issue
a wsa:InvalidMessageInformationHeaders fault if they are detected.
However, a conformant service MAY ignore any duplicate headers if it
assumes the first occurrence is the valid one.

Duplicate headers are considered a defect originating in the client side of the conversation.
Returning a fault helps identify faulty clients. However, an implementation may be
resource-constrained and unable to detect duplicate headers, so they may be ignored.

R10.3-9: By default, a compliant service SHOULD NOT fault requests with leading
and trailing whitespace in XML element values and SHOULD trim such
whitespace by default as if the whitespace had not occurred. Services
SHOULD NOT emit messages containing leading or trailing whitespace
within element values unless the whitespace values are properly part of the
value. If the service cannot accept whitespace usage within a message
because the XML schema establishes other whitespace usage, the service
should emit a wsman:EncodingLimit fault with a detail code of
wsman:faultDetail/Whitespace.

Clients should not send messages with leading or trailing whitespace in the values, but
services should eliminate unneeded "cosmetic" whitespace on both sides of the element
value without faulting.

(See also http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/#dt-whiteSpace)

R10.3-10: Services SHOULD NOT fault messages containing XML comments, as this
is part of the XML standard. Services MAY emit messages containing
comments relating to the origin and processing of the message or add
comments for debugging purposes.

R10.3-11: If the SOAPAction header is present in an HTTP/HTTPS-based request
which carries a SOAP message, it MUST match the wsa:Action URI
present in the SOAP message. The SOAPAction headaer is optional and
a service MUST NOT fault a request if this header is missing.

Since WS-Management is based on SOAP 1.2, the SOAPAction header is optional and is
merely used as an optimization. If present, it MUST match the wsa:Action URI used in the
SOAP message. The service is permitted to fault the request by simple examination of the
SOAPAction header if the action is not valid without examination of the SOAP content.
However, the service may not fault the request if the SOAPAction header is omitted.

10.4 Lack of Response
If an operation succeeds but a response cannot be computed or actually delivered due to
runtime difficulties or transport problems, no response should be sent and the connection

 108

should be terminated.

Specific transports may have specific techniques for terminating the connection, for
example see R10.2-9.

This behavior is preferable to attempting a complex model for sending responses in a
delayed fashion. Implementations should generally keep a log of all requests and their
results, and allow the client to reconnect later to enumerate the operation log (using
wsen:Enumerate) if they fail to get a response. The format and behavior of such a log is
beyond the scope of this specification. Since the client must be coded to take into account
a lack of response in any case, all abnormal message conditions can safely revert to this
scenario.

R10.4-1: If correct responses or faults cannot be computed or generated due to
internal failure of the service, a response to any operation SHOULD NOT
be sent.

The client has to deal with cases of no response in any case, so the service should simply
force the client into that mode rather than send a response or fault which is not defined in
this specification.

10.5 Replay Of Messages
A service should not resend messages which have not been acknowledged at the transport
level.

R10.5-1: A service MUST NOT resend an unacknowledged messages unless they
are part of a higher general-purpose reliable messaging or transactional
protocol layer, in which case the retransmission follows the rules for that
protocol.

10.6 Encoding Limits
Most of the following limits are in characters. However, the maximum overall SOAP
envelope size is defined in octets. Implementations are free to exceed these limits.
However, a service is considered conformant if it observes these limits. Any limit violation
results in a wsman:EncodingLimit fault. In addition to any requirements or limits
established by the WS-I Basic Profile, the service should observe the following:

 R10.6-1 A service MAY fail to process any URI with more than 2048 characters.

R10.6-2: A service SHOULD NOT generate a URI with more than 2048 characters.

R10.6-3: A service MAY fail to process a Selector or Option Name of more than 2048
characters.

R10.6.4: A service MAY fail to process a Selector value or Option value of more than
4096 characters, including any embedded Selectors, and MAY fail to
process a message which contains more than 8096 characters of content in
the root <Selectors> element.

R10.6-6: A service MAY reject a SOAP Envelope with more than 32,767 octets.
Similarly, it MAY fault any operation that would require a single reply

 109

exceeding 32,767 octets.

R10.6-7: A service MAY always emit faults that are 4096 octets or less in length,
regardless of any requests by the client to limit the response size. Clients
should always be prepared for this minimum in case of an error.

10.7 Binary Attachments
MTOM is used to support binary attachments to WS-Management. If a service supports
attachments, the following rules apply:

R10.7-1: A conformant service MAY OPTIONALLY support binary attachments to any
operation using the SOAP Message Transmission Optimization Mechanism
(MTOM) proposal (http://www.w3.org/TR/2004/PR-soap12-mtom-
20041116).

R10.7-2: If a service supports attachments, the service MUST support the Abstract
Transmission Optimization Feature.

R10.7-3: If a service supports attachments, the service MUST support the Optimized
MIME Multipart Serialization Feature.

R10.7-4: If a service supports attachments, the service MUST support the HTTP
Transmission Optimization Feature.

R10.7-5: If a service cannot process a message with an attachment or unsupported
encoding type and the transport is HTTP or HTTPS, it MUST return HTTP
error 415 as its response (unsupported media).

R10.7-6: If a service cannot process a message with an attachment or unsupported
encoding type using transports other than HTTP/HTTPS, it SHOULD return
a wsman:EncodingLimit fault with a detail code of wsman:EncodingType.

Other attachment types are not prohibited.

10.8 Case-Sensitivity
While XML and SOAP are intrinsically case-sensitive with regard to schematic elements,
many underlying systems which will be serviced by WS-Management are not intrinsically
case-sensitive. This primarily applies to values, but may also apply to schemas which are
automatically and dynamically generated from other sources.

A service may observe any case usage required by the underlying execution environment.

The only requirement is that messages must be able to pass validation tests against any
schema definitions. At any time, it is possible that a validation engine may be interposed
between the client and server in the form of a proxy, so schematically valid messages are a
practical requirement.

Otherwise, this specification makes no requirements as to case usage. A service is free to
interpret values in a case-sensitive or case-insensitive manner.

It is RECOMMENDED that case usage not be altered in transit by any part of the WS-

 110

Management processing chain. Whatever case usage is established by the sender of the
message should be retained throughout the lifetime of that message.

10.9 The wsman: URI scheme

This specification makes use of a wsman: URI scheme for three purposes:

(1) Fault detail URIs wsman:faultDetail/....

(2) Security profile URIs wsman:secProfile/...

(3) WS-Management-specific filter dialects wsman:filterDialect/...

If vendor-specific URIs need to make use of the wsman: scheme in cases where another
scheme such as http: may not be appropriate, the vendor SHOULD include the vendor-
specific internet domain name in the first component of the URI to prevent naming
collisions:

 wsman:vendor.com/...

This specification reserves all other initial tokens (other than those beginning with a vendor-
specific domain name) after the initial token sequence wsman: for future use.

11.0 Faults

11.1 Introduction
Faults are returned when the SOAP message is successfully delivered by the transport and
processed by the service, but the message cannot be processed properly. If the transport
cannot successfully deliver the message to the SOAP processor, a transport error will occur
instead.

Only SOAP 1.2 faults [or later] should be supported.

Generally, faults should not be issued unless they are expected as part of a call-response
pattern. It would not be valid for a client to issue a wxf:Get, and receive the
wxf:GetResponse and then fault that response.

11.2 Fault Encoding
This section discusses the encoding of faults in XML.

R11.2-1: A conformant service MUST use the fault encoding format and normative
constraints defined below for faults in the WS-Management space and any
of its dependent specifications:

(1) <s:Envelope>
(2) xmlns:s="http://www.w3.org/2003/05/soap-envelope"
(3) xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing">
(4) <s:Header>

 111

(5) <wsa:Action>
(6) http://schemas.xmlsoap.org/ws/2004/08/addressing/fault
(7) <wsa:Action>
(8) <wsa:MessageID>
(9) uuid:d9726315-bc91-430b-9ed8-ce5ffb858a87
(10) </wsa:MessageID>

(11) <wsa:RelatesTo>

(12) uuid:d9726315-bc91-430b-9ed8-ce5ffb858a85

(13) </wsa:RelatesTo>

(14) </s:Header>

(15)

(16) <s:Body>

(17) <s:Fault>

(18) <s:Code>

(19) <s:Value> [Code] </s:Value>

(20) <s:Subcode>

(21) <s:Value> [Subcode] </s:Value>

(22) </s:Subcode>

(23) </s:Code>

(24) <s:Reason>

(25) <s:Text xml:lang="en"> [Reason] </s:Text>

(26) </s:Reason>

(27) <s:Detail>

(28) [Detail]

(29) </s:Detail>

(30) </s:Fault>

(31) </s:Body>

R11.2-2: The following describes additional, normative constraints on the outline listed
above:

s:Envelope/s:Header/wsa:Action
MUST be a valid fault Action URI from the relevant specification which defined the fault.

s:Envelope/s:Header/wsa:MessageId
MUST be present for the fault, like any non-fault message.

s:Envelope/s:Header/wsa:RelatesTo
Like any other reply, this MUST contain the MessageID of the original request which
caused the fault.

s:Body/s:Fault/s:Value
MUST be one of s:Sender or s:Receiver, as specified in the Master Fault Table under the
"Code" entry.

s:Body/s:Fault/s:Subcode/s:Value
For WS-Management-related messages, MUST be one of the subcode QNames defined in
the Master Fault Table. If the service exposes custom methods or other messaging, this
of course may be another QName not in the Master Fault Table.

s:Body/s:Fault/s:Reason
This OPTIONAL element SHOULD contain localized text explaining the fault in more

 112

detail. This is typically extracted from the "Reason" field of the Master Fault Table.
However, the text may be adjusted to reflect a specific circumstance. This element may
be repeated for each language. Note that the xml:lang attribute MUST be present.

s:Body/s:Fault/s:Detail
This OPTIONAL element SHOULD reflect the RECOMMENDED content from the Master
Fault Table.

The above fault template is populated by examining entries from the Master Fault Table in
11.3, which includes all relevant faults from WS-Management and its underlying
specifications. Note that s:Reason and s:Detail are always optional, but recommended,
and that since s:Reason must contain an xml:lang attribute to indicate the language used in
the descriptive text.

R11.2-3: Note that fault wsa:Action URI values vary from fault to fault. The service
MUST issue a fault using the correct URI, which is based on the
specification which defined the fault. Faults defined in this specification
must have the URI value:

 http://schemas.xmlsoap.org/ws/2005/06/management/fault

The Master Fault Table in 11.6 contains the relevant wsa:Action URIs which apply. The URI
values are directly implied by the QName for the fault.

11.3 NotUnderstood Faults
There is a special case for faults relating to mustUnderstand attributes on SOAP headers.
SOAP specifications define the fault differently than the encoding in 11.2. See 5.4.8 in
reference [4]. In practice, the fault only varies in indicating the SOAP header that was not
understood, the QName and namespace (line 3):

(1) <s:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope
(2) xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing">
(3)
(4) <s:Header>
(5) <s:NotUnderstood qname="QName of header" xmlns:ns="XML namespace of header"/>
(6) <wsa:Action>
(7) http://schemas.xmlsoap.org/ws/2004/08/addressing/fault
(8) </wsa:Action>
(9) <wsa:MessageID>
(10) uuid:d9726315-bc91-430b-9ed8-ce5ffb858a87

(11) </wsa:MessageID>

(12) <wsa:RelatesTo>

(13) uuid:d9726315-bc91-430b-9ed8-ce5ffb858a85

(14) </wsa:RelatesTo>

(15) </s:Header>

(16)

 113

(17) <s:Body>

(18) <s:Fault>

(19) <s:Code>

(20) <s:Value>s:MustUnderstand</s:Value>

(21) </s:Code>

(22) <s:Reason>

(23) <s:Text xml:lang="en-US">Header not understood</s:Text>

(24) </s:Reason>

(25) </s:Fault>

(26) </s:Body>

(27)

(28) </s:Envelope>

The fault template shown above may be used in all cases of failure to process
mustUnderstand attributes. Line 5-8 show the important content: indicating which header
was not understood, and a generic wsa:Action specifying that the current message is a
fault.

It is important that the wsa:RelatesTo be included so that the client can correlate the fault
with the original request. Over transports other than HTTP in which may requests may be
interlaced, this may be the only way to respond to the correct sender.

If the original wsa:MessageID itself is faulty and the connection is request-response
oriented, the service MAY attempt to send back a fault without the wsa:MessageID and
wsa:RelatesTo fields, or may simply fail to respond, as discussed in 11.4.

11.4 Degenerate Faults
In rare cases, the SOAP message may not contain enough information for a fault to be
generated properly. For example, if the wsa:MessageID is garbled, it will be difficult for the
service to return a fault which references the original message. With some transports, it
may be impossible to reference the sender in order to return the fault.

If the transport guarantees a simple request-response pattern, then the service MAY send
back a fault with no wsa:RelatesTo field. However, in some cases, there is no guarantee
that the sender can be reached (the wsa:FaultTo contains an invalid address, so there is no
way to deliver the fault).

In all of the cases, the service SHOULD revert to the rules of 10.4, in which no response is
sent. The service SHOULD attempt to log the requests in some way so as to help identify
the defective client.

11.5 Fault Extensibility
A service may include additional fault information beyond what is defined in this
specification. The appropriate extension element is the s:Detail element and service-
specific XML may appear at any location within this element, provided that it is properly
mapped to an XML namespace which defines the schema for that content. WS-Management
makes use of this extension technique for the wsman:FaultDetail URI values:

 114

(1) <s:Detail>
(2) <wsman:FaultDetail>... </wman:FaultDetail>
(3) <ExtensionData xmlns="vendor-specific-namespace">...</ExtensionData>
(4) ...
(5) </s:Detail>

The extension data elements may appear before or after any WS-Management-specific
extensions mandated by this specification and more than one extension element is
permitted.

11.6 Master Fault Table
The following table includes all faults from this specification and all underlying specifications
and should be taken as the normative fault list for WS-Management.

R11.6-1: A service MUST return faults from the following list when the operation that
caused them was a message in this specification for which faults are
specified. A conformant service MAY return other faults for messages
which are not part of WS-Management.

It is critical to client interoperation that the same fault be used in identical error cases. If
each service returns a distinct fault for "Not Found", it will be impossible to construct
interoperable clients. In the tables that follow, the source specification of a fault is based
on its QName.

NOTE: The list is alphabetized on the primary subcode name, regardless of the namespace
prefix.

11.6.1 wsman:AccessDenied

Fault Subcode wsman:AccessDenied

Action URI http://schemas.xmlsoap.org/ws/2005/06/management/fault

Code s:Sender

Reason The sender was not authorized to access the resource

Detail None

Comments This is returned generically for all access denials relating to authentication
or authorization failures. This should not be used to indicate locking or
concurrency conflicts or other types of denials not related to security per
se.

Applicability Any message

 115

Remedy Client must acquire the correct credentials and retry the operation.

11.6.2 wsman:NoAck

Fault Subcode wsman:NoAck

Action URI http://schemas.xmlsoap.org/ws/2005/06/management/fault

Code s:Sender

Reason The receiver did not acknowledge the event delivery.

Detail None

Comments This is returned when the client (subscriber) receives an event with a
wsman:AckRequested header and does not (or cannot) acknowledge.
The service should cease sending events and terminate the subscription.

Applicability Any event delivery action (including heartbeats, dropped events, etc.) in

any delivery mode

Remedy For subscribers, the subscription must be resubmitted without the
acknowledgement option.

For services delivering events, the service should cancel the subscription
immediately.

11.6.3 wsa:ActionNotSupported

Fault Subcode wsa:ActionNotSupported

Action URI http://schemas.xmlsoap.org/ws/2004/08/addressing/fault

Code s:Sender

Reason The action is not supported by the service

Detail <s:Detail>

 <wsa:Action> Incorrect Action URI </wsa:Action>
</s:Detail>

<!-- The unsupported Action URI is returned, if possible -->

 116

Comments This means that the requested action is not supported by the
implementation.

As an example, read-only implementations (supporting only wxf:Get,
wsen:Enumerate) will return this for any other operations besides these
two.

If the action is never supported by the implementation, the fault should be
generated as shown above. However, if the implementation supports the
action in a general sense, but it is not appropriate match for the resource,
an additional detail code may be added to the fault:

 <s:Detail>

 <wsa:Action> The offending Action URI </wsa:Action>

 <wsman:FaultDetail>

 wsman:faultDetail/ActionMismatch

 </wsman:FaultDetail>

This situation can occur when the implementation supports wxf:Put for
example, but the client attempted to update a read-only resource.

Applicability All messages

Remedy Client must consult metadata provided by the service to determine which
operations are supported.

11.6.4 wsman:Concurrency

Fault Subcode wsman:Concurrency

Action URI http://schemas.xmlsoap.org/ws/2005/06/management/fault

Code s:Sender

Reason The action could not be completed due to concurrency or locking problems

Detail

Comments This means that the requested action could not be carried out due to
either internal concurrency or locking problems or because another user is
accessing the resource.

Thismay occur if a resource is being enumerated using wsen:Enumerate
and another client attempts operations such as wxf:Delete which would
affect the result of the enumeration in progress.

 117

Applicability All messages

Remedy Client must wait and retry

11.6.5 wsman:AlreadyExists

Fault Subcode wsman:AlreadyExists

Action URI http://schemas.xmlsoap.org/ws/2005/06/management/fault

Code s:Sender

Reason The sender attempted to create a resource which already exists

Detail none

Comments This is returned in cases where the user attempted to create resource
which already exists.

Applicability wxf:Create

Remedy Client use wxf:Put or else create a resource with a different identity.

11.6.6 wsen:CannotProcessFilter

Fault Subcode wsen:CannotProcessFilter

Action URI http://schemas.xmlsoap.org/ws/2004/09/enumeration/fault

Code s:Sender

Reason The requested filter could not be processed.

Detail <s:Detail>

 <s:Text xml:lang="en"> Explanation of why filter cannot be processed
</s:Text>

</s:Detail>

Comments This is typically returned for syntax errors or other semantic problems
with the filter.

If the filter was valid, but the service cannot execute the filter due to

 118

misconfiguration, lack of resources or other service-related problems,
more specific faults should be returned, such as wsman:QuotaLimit or
wsman:InternalError.

Applicability wsen:Enumerate

Remedy Client fixes the filter problem and tries again.

11.6.7 wse:DeliveryModeRequestedUnavailable

Fault Subcode wse:DeliveryModeRequestedUnavailable

Action URI http://schemas.xmlsoap.org/ws/2004/08/eventing/fault

Code s:Sender

Reason The requested delivery mode is not supported.

Detail <s:Detail>

 <wse:SupportedDeliveryMode>... </wse:SupportedDeliveryMode>

 <wse:SupportedDeliveryMode>...</wse:SupportedDeliveryMode>

 ...
</s:Detail>

<!-- This is a simple list of one or more supported delivery mode URIs.
This may be left empty. It is optional. -->

Comments This is returned for unsupported delivery modes for the specified resource.

If the stack supports the delivery mode in general, but not for the specific
resource, this fault is still returned.

Other resources may support the delivery mode. The fault does not imply
that the delivery mode is not supported by the implementation.

Applicability wse:Subscribe

Remedy Client should select one of the supported delivery modes.

 119

11.6.8 wsman:DeliveryRefused

Fault Subcode wsman:DeliveryRefused

Action URI http://schemas.xmlsoap.org/ws/2005/06/management/fault

Code s:Receiver

Reason The receiver refuses to accept delivery of events and requests that the
subscription be canceled.

Detail none

Comments This is returned by event receivers to force a cancellation of a
subscription.

This can happen when the client tried to Unsubscribe, but failed, or when
the client has lost knowledge of active subscriptions and doesn't want to
keep receiving events it no longer owns. This can help with cleanup of
spurious or leftover subscriptions when clients are reconfigured or
reinstalled and their previous subscriptions are still active.

Applicability Any event delivery message in any mode

Remedy The service should cease delivering events for the subscription and cancel
the subscription, sending any applicable wse:SubscriptionEnd messages.

11.6.9 wsa:DestinationUnreachable

Fault Subcode wsa:DestinationUnreachable

Action URI http://schemas.xmlsoap.org/ws/2004/08/addressing/fault

Code s:Sender

Reason No route can be determined to reach the destination role defined by the
WS-Addressing To.

Detail <s:Detail>

 <s:Text xml:lang="en">

 Explanation of why endpoint cannot be reached

 </s:Text>

 <!-- The following elements are optional -->

 <wsman:FaultDetail> one of the URI values below

 120

</wsman:FaultDetail>

 ...any service-specific additional XML content...

</s:Detail>

Optionally, the wsman:FaultDetail field may contain one of the following

wsman:faultDetail/InvalidResourceURI

Comments This is returned as the general "Not Found" case for a Resource, in which
the ResourceURI and any applicable Selectors were valid, but the actual
targeted object could not be found.

This fault is NOT used to merely indicate the resource is temporarily
offline, which is indicated by wsa:EndpointUnavailable.

Applicability All request messages

Remedy Client should attempt diagnose the version of the service, query any
metadata, and perform other diagnostic operations to determine why the
request cannot be routed.

11.6.10 wsman:EncodingLimit

Fault Subcode wsman:EncodingLimit

Action URI http://schemas.xmlsoap.org/ws/2005/06/management/fault

Code s:Sender

Reason An internal encoding limit was exceeded in a request or would be violated if the message were
processed.

Detail <s:Detail>

 <wsman:FaultDetail>

 Optional; one of the enumeration values from below

 </wsman:FaultDetail>

 <s:Text>

 Optional textual description of the limit violation

 </s:Text>

 ...any service-specific additional XML content...

 121

</s:Detail>

In the <wsman:FaultDetail> element, one of the following enumeration values:

 wsman:faultDetail/URILimitExceeded

(URI was too long)

 wsman:faultDetail/MaxEnvelopeSize

(The requested maximum was too large)

 wsman:faultDetail/MaxEnvelopeSizeExceeded

(The computed response is too large based on the client limit, but operation was
read-only or never executed to start with)

 wsman:faultDetail/ServiceEnvelopeLimit

(Service reached its own internal limit when computing response)

 wsman:faultDetail/SelectorLimit

(Too many Selectors)

 wsman:faultDetail/OptionLimit

(Too many Options)

 wsman:faultDetail/CharacterSet

(Unsupported character set)

 wsman:faultDetail/UnreportableSuccess
(Operation succeeded and cannot be reversed, but result is too large to send)

 wsman:faultDetail/Whitespace
(Client-side whitespace usage is not supported)

 wsman:faultDetail/EncodingType
(Used for unsupported MTOM or other encoding types)

Comments
This is returned when a system limit was exceeded, whether a published
limit or a service-specific limit.

 122

Applicability All request messages

Remedy Client should be reconfigured to send messages which fit the encoding
limits of the service.

11.6.11 wsa:EndpointUnavailable

Fault Subcode wsa:EndpointUnavailable

Action URI http://schemas.xmlsoap.org/ws/2004/08/addressing/fault

Code s:Receiver

Reason The specified endpoint is currently unavailable

Detail <s:Detail>

 <wsa:RetryAfter> xs:duration </wsa:RetryAfter> <!-- optional -->

 ...optional service-specific XML content

 <wsman:FaultDetail> one of the URI values below
</wsman:FaultDetail>

</s:Detail>

Comments This is returned if the message was correct and the EPR was valid (valid
ResourceURI and valid Selectors), but the specified resource is offline.

In practice , it is difficult for a service to distinguish between "Not Found"
cases and "Offline" cases. In general, wse:DestinationUnreachable is
preferable.

Applicability All request messages

Remedy Client can retry later, after the resource is again online.

11.6.12 wse:EventSourceUnableToProcess

Fault Subcode wse:EventSourceUnableToProcess

Action URI http://schemas.xmlsoap.org/ws/2004/08/eventing/fault

 123

Code s:Sender

Reason The event source cannot process the subscription.

Detail <s:Detail>

 <s:Text>

 Text description of why subscription cannot be processed

 </s:Text>

 <wsman:FaultDetail> </wsman:FaultDetail>

 ...any service-specific additional XML content...

</s:Detail>

The wsman:FaultDetail code may be set to
wsman:faultDetail/UnusableAddress

Comments This should be limited to cases where the event filter contains syntax or
semantic errors, or if the wse:NotifyTo address is not usable due to the
fact it is incorrect or permissions cannot be acquired for event delivery.

It should not be used to report other internal failues, such as resource
limits, internal service errors, "Server Busy", "Access Denied", and any
other more specific faults which provide more information to the client.

Applicability wse:Subscribe

Remedy Client should repair the filter syntax.

11.6.13 wsen:FilterDialectRequestedUnavailable

Fault Subcode

wsen:FilterDialectRequestedUnavailable

Action URI http://schemas.xmlsoap.org/ws/2004/09/enumeration/fault

Code s:Sender

Reason The requested filtering dialect is not supported.

Detail <s:Detail>

 <wsen:SupportedDialect> </wsen:SupportedDialect> +

 124

</s:Detail>

....

Comments This is returned when the client requests a filter type or query language
that is not supported by the service.

The filter dialect may vary from resource to resource, or may apply to the
entire service.

Applicability wsen:Enumerate

Remedy Client must switch to a supported dialect or do a simple enumeration with
no filter.

11.6.14 wse:FilteringNotSupported

Fault Subcode wse:FilteringNotSupported

Action URI http://schemas.xmlsoap.org/ws/2004/08/eventing/fault

Code s:Sender

Reason Filtering over the event source is not supported.

Detail none

Comments Returned when the service does not support filtered subscriptions for the
specified event source, but only supports simple delivery of all events for
the resource.

Note that the service may support filtering over a different event resource,
or may not support filtering for any resource. The same fault applies.

Applicability wse:Subscribe

Remedy Client must subscribe using unfiltered delivery.

11.6.15 wsen:FilteringNotSupported

Fault Subcode wsen:FilteringNotSupported

 125

Action URI http://schemas.xmlsoap.org/ws/2004/09/enumeration/fault

Code s:Sender

Reason Filtered enumeration is not supported.

Detail

Comments Returned when the service does not support filtering of enumerations at
all, but only supports simple enumeration. If enumeration as a whole is
not supported, then the correct fault is wsa:ActionNotSupported

Note that the service may support filtering over a different enumerable
resource, or may not support filtering for any resource. The same fault
applies.

Applicability wsen:Enumerate

Remedy Client must switch to a simple enumeration.

11.6.16 wse:FilteringRequestedUnavailable

Fault Subcode wse:FilteringRequestedUnavailable

Action URI http://schemas.xmlsoap.org/ws/2004/08/eventing/fault

Code s:Sender

Reason The requested filter dialect is not supported

Detail <s:Detail>

 <wse:SupportedDialect>.. </wse:SupportedDialect> +

 <wsman:FaultDetail> ..the URI below, if applicable
</wsman:FaultDetail>

</s:Detail>

wsman:faultDetail/FilteringRequired

Comments This is returned when the client requests a filter dialect that is not
supported by the service.

In some cases, a subscriptionr requires a filter, as the result of an
unfiltered subscription may be infinite or extremely large. In these cases,

 126

the wsman:faultDetail/FilteringRequired needs to be included in the
s:Detail element.

Applicability wse:Subscribe

Remedy Client must switch to a supported filter dialect or use no filtering.

11.6.17 wsman:InternalError

Fault Subcode wsman:InternalError

Action URI http://schemas.xmlsoap.org/ws/2005/06/management/fault

Code s:Receiver

Reason The service cannot comply with the request due to internal processing
errors.

Detail <s:Detail>

 <s:Text>

 <!-- Text description of the internal failure or system-specific error codes
& text -->
 </s:Text>

 ...service-specific extension XML elements....

<s:Detail>

Comments

This is a generic error for capturing internal processing errors within the
service. For example, if the service cannot load the necessary executable
images, or its configuration is corrupted, or hardware is not operating
properly, or any 'unknown' or "unexpected" internal errors, this is the
correct fault.

It is expected that the service must be reconfigured, restarted or
reinstalled, so merely asking the client to retry will not succeed.

Applicability All messages

Remedy Client must repair the service out of band to WS-Management.

 127

11.6.18 wsman:InvalidBookmark

Fault Subcode wsman:InvalidBookmark

Action URI http://schemas.xmlsoap.org/ws/2005/06/management/fault

Code s:Sender

Reason The bookmark supplied with the subscription is not valid.

Detail <s:Detail>

 <wsman:FaultDetail>

 If possible, one of the following URI values

 </wsman:FaultDetail>

</s:Detail>

wsman:faultDetail/Expired

wsman:faultDetail/Invalid

Comments This is returned if a bookmark has expired or is corrupt, or otherwise
unknown.
If the service cannot detect "Expired" bookmarks, "Invalid" may always be
returned.

Applicability wsen:Subscribe

Remedy Client must issue a new subscription without bookmarks at all or locate
the correct bookmark.

11.6.19 wsen:InvalidEnumerationContext

Fault Subcode wsen:InvalidEnumerationContext

Action URI http://schemas.xmlsoap.org/ws/2004/09/enumeration/fault

Code s:Receiver

Reason The supplied enumeration context is invalid.

Detail None

Comments An invalid enumeration context was supplied with the message. Typically,

 128

this will happen with a wsen:Pull.

The enumeration context may be invalid due to expiration, an invalid
format, or reuse of an old context which is no longer being tracked by the
service.

The service also can return this for any case where the enumerator has
been terminated unilaterally on the service side, although one of the more
descriptive faults is preferable, since this usually happens on out-of-
memory (wsman:QuotaLimit), authorization failures
(wsman:AccessDenied) or internal errors (wsman:InternalError).

Applicability wsen:Pull, wsen:Release (whether a pull-mode subscription, or a normal

enumeration).

Remedy Client must abandon the enumeration and let the service time it out, as
wsen:Release will fail as well.

11.6.20 wse:InvalidExpirationTime

Fault Subcode wse:InvalidExpirationTime

Action URI http://schemas.xmlsoap.org/ws/2004/08/eventing/fault

Code s:Sender

Reason Invalid expiration time

Detail none

Comments Expiration time was not valid at all or within the limits of the service.

Used for outright errors (expirations in the past, etc.) or expirations too
far into the future.

If the service does not support expiration times at all, then a
wsman:UnsupportedFeature fault should be returned with the correct
detail code.

Applicability wse:Subscribe

Remedy Client issues a new subscription with a supported expiration time.

 129

11.6.21 wsen:InvalidExpirationTime

Fault Subcode wsen:InvalidExpirationTime

Action URI http://schemas.xmlsoap.org/ws/2004/09/enumeration/fault

Code s:Sender

Reason The expiration time was not valid.

Detail none

Comments Since WS-Management recommends against impementing the
wsen:Expiration feature, this fault should not occur with most
implementations.

Consult the WS-Enumeration specification for more information.

Applicability wsen:Enumerate

Remedy N/A

11.6.22 wse:InvalidMessage

Fault Subcode wse:InvalidMessage

Action URI http://schemas.xmlsoap.org/ws/2004/08/eventing/fault

Code s:Sender

Reason The request message had unknown or invalid content and could not be
processed

Detail <s:Detail>

 <s:Text> ...identify the problem either with text or XML fragments
</s:Text>

</s:Detail>

Comments Generally not used in WS-Management, although it MAY be used for cases
not covered by other faults.

If the content violates the schema, a wsman:SchemaValidationError fault
should be sent. If specific errors occur in the subscription body, one of the
more descriptive faults should be used.

 130

This should not be used to indicate unsupported features, only unexpected
or unknown content in violation of this specification.

Applicability WS-Eventing request messages

Remedy Client has a defect and should be corrected to issue valid messages which
comply with this specification.

11.6.23 wsa:InvalidMessageInformationHeader

Fault Subcode wsa:InvalidMessageInformationHeader

Action URI http://schemas.xmlsoap.org/ws/2004/08/addressing/fault

Code s:Sender

Reason A message information header is not valid and the message cannot be
processed.

Detail <s:Detail>

 ...the invalid header...

</s:Detail>

Comments This may occur with any type of SOAP header error. The header may be
invalid in terms of schema, value, or may constitute a semantic error.

This should not be used to indicate an invalid resource URI, bad Selector,
or other WS-Management-specific concepts, but should be limited to
structural problems with the SOAP payload prior to interpretation in the
WS-Management context.

Examples are repeated MessageIDs, missing RelatesTo on a response,
badly formed addresses, or any other missing header content.

Applicability All messages

Remedy Major client defect. The SOAP packets are not correctly formed.

11.6.24 wsman:InvalidOptions

Fault Subcode wsman:InvalidOptions

Action URI http://schemas.xmlsoap.org/ws/2005/06/management/fault

 131

Code s:Sender

Reason One or more options were not valid.

Detail <s:Detail>

 <wsman:FaultDetail>

 If possible, one of the following URI values

 </wsman:FaultDetail>

</s:Detail>

wsman:faultDetail/NotSupported

wsman:faultDetail/InvalidName

wsman:faultDetail/InvalidValue

Comments This generically covers all cases where the option names or values are not
valid or they are used in incorrect combinations.

Applicability All request messages

Remedy Client should retrieve the catalog entry for the resource and determine
how to correct the invalid option values.

11.6.25 wsman:InvalidParameter

Fault Subcode wsman:InvalidParameter

Action URI http://schemas.xmlsoap.org/ws/2005/06/management/fault

Code s:Sender

Reason An operation parameter was not valid

Detail <s:Detail>

 <wsman:FaultDetail>

 If possible, one of the following URI values

 </wsman:FaultDetail>

</s:Detail>

wsman:faultDetail/TypeMismatch
wsman:faultDetail/InvalidName

 132

Comments Returned when a parameter to a custom action was not valid.

This is a default for new implementations which need to have a generic
fault for this case. The method may also return any specific fault of its
own.

Applicability All messages with custom actions

Remedy Client should consult the WSDL for the operation and determine how to
supply the correct parameter.

11.6.26 wxf:InvalidRepresentation

Fault Subcode wxf:InvalidRepresentation

Action URI http://schemas.xmlsoap.org/ws/2004/09/transfer/fault

Code s:Sender

Reason The XML content was invalid.

Detail <s:Detail>

 <wsman:FaultDetail>

 If possible, one of the following URI values

 </wsman:FaultDetail>

</s:Detail>

wsman:faultDetail/InvalidValues

wsman:faultDetail/MissingValues

wsman:faultDetail/InvalidNamespace

wsman:faultDetail/InvalidFragment

Comments This may be returned when the input XML is not valid semantically or uses
the wrong schema for the resource.

However, a wsman:SchemaValidationError fault should be returned if the
error is related to XML Schema violations per se, as opposed to invalid
semantic values.

 133

Note the anomalous case where a schema violation does not occur, but
the namespace is simply the wrong one, in which
wsman:faultDetail/InvalidNamespace is returned.

Applicability wxf:Put, wxf:Create

Remedy Client defect. The client should correct the input XML.

11.6.27 wsman:InvalidSelectors

Fault Subcode wsman:InvalidSelectors

Action URI http://schemas.xmlsoap.org/ws/2005/06/management/fault

Code s:Sender

Reason The Selectors for the resource were not valid

Detail <s:Detail>

 <wsman:FaultDetail>

 If possible, one of the following URI values

 </wsman:FaultDetail>

</s:Detail>

wsman:faultDetail/InsufficientSelectors
wsman:faultDetail/UnexpectedSelectors

wsman:faultDetail/TypeMismatch
wsman:faultDetail/InvalidValue
wsman:faultDetail/AmbiguousSelectors

wsman:faultDetail/DuplicateSelectors

Comments This covers all cases where the specified Selectors were incorrect or
unknown for the specified resource.

Applicability All request messages

Remedy Client should retrieve documentation or metadata and correct the
Selectors.

 134

11.6.28 wsa:MessageInformationHeaderRequired

Fault Subcode wsa:MessageInformationHeaderRequired

Action URI http://schemas.xmlsoap.org/ws/2004/08/addressing/fault

Code s:Sender

Reason A required header was missing.

Detail <s:Detail>

 The XML QName of the missing header

</s:Detail>

Comments A required message information header, To, MessageID, or Action, is not
present

Applicability All messages

Remedy Major client defect. The SOAP packets are not correctly formed.

11.6.29 wsman:QuotaLimit

Fault Subcode wsman:QuotaLimit

Action URI http://schemas.xmlsoap.org/ws/2005/06/management/fault

Code s:Sender

Reason The service is busy servicing other requests.

Detail <s:Detail>

 <s:Text> reason </s:Text>

</s:Detail>

Comments This is returned when the SOAP message is otherwise correct, but the
service has reached a resource or quota limit.

Applicability All messages

Remedy Client can retry later

 135

11.6.30 wsman:RenameFailure

Fault Subcode wsman:RenameFailure

Action URI http://schemas.xmlsoap.org/ws/2005/06/management/fault

Code s:Sender

Reason The Selectors for the resource were not valid

Detail <s:Detail>

 <wsman:FaultDetail>

 If possible, one of the following URI values

 </wsman:FaultDetail>

</s:Detail>

wsman:faultDetail/InvalidResourceURI
wsman:faultDetail/TargetAlreadyExists
wsman:faultDetail/InvalidAddress

wsman:faultDetail/InvalidSelectorAssignment

Comments This covers all cases where the specified Selectors were incorrect.

Applicability All request messages

Remedy Client should retrieve the catalog entry and correct the Selectors.

11.6.31 wsman:SchemaValidationError

Fault Subcode wsman:SchemaValidationError

Action URI http://schemas.xmlsoap.org/ws/2005/06/management/fault

Code s:Sender

Reason The supplied SOAP violates the corresponding XML Schema definition.

Detail <s:Detail>

 <s:Text>

 Service-specific error messages as to the schema violation.

 </s:Text>

</s:Detail>

 136

Comments Used for any XML parsing failure or schema violations.

Note that full validation of the SOAP against schemas is not expected in
real-time, but processors may in fact notice schema violations, such as
type mismatches. In all of these cases, this fault applies.

In debugging modes where validation is in fact occurring, this should be
returned for all errors noted by the validating parser.

Applicability All messages

Remedy Client corrects the message

11.6.32 wsen:TimedOut

Fault Subcode wsen:TimedOut

Action URI http://schemas.xmlsoap.org/ws/2004/09/enumeration/fault

Code s:Receiver

Reason The enumerator has timed out and is no longer valid.

Detail none

Comments This should not be used in WS-Management due to overlap with the
wsman:TimedOut which covers all the other messages.

Applicability wsen:Pull

Remedy The client can retry the wsen:Pull.

11.6.33 wsman:TimedOut

Fault Subcode wsman:TimedOut

Action URI http://schemas.xmlsoap.org/ws/2005/06/management/fault

Code s:Receiver

Reason The operation has timed out

Detail none

Comments The operation could not be completed within the wsman:OperationTimeout
value or else an internal override timeout was reached by the service
while trying to process the request.

 137

This is also returned in all enumerations when there is no content
available for the current wsen:Pull request. Clients may simply retry the
wsen:Pull again until a different fault is returned.

Applicability All requests

Remedy Client may retry the operation.

If the operation was a write (delete, create, execute), the client should
consult the system operation log before blindly attempting a retry, or
attempt a wxf:Get or other read operation to try and discover the result of
the previous operation.

11.6.34 wse:UnableToRenew

Fault Subcode wse:UnableToRenew

Action URI http://schemas.xmlsoap.org/ws/2004/08/eventing/fault

Code s:Sender

Reason The subscription could not be renewed

Detail <s:Detail>

 <s:Text>

 Optional service-specific error messages as to why the Renew failed

 </s:Text>

</s:Detail>

Comments This is returned in all cases where the subscription cannot be renewed,
but is otherwise valid.

Applicability wse:Renew

Remedy Client must issue a new subscription.

11.6.35 wse:UnsupportedExpirationType

Fault Subcode wse:UnsupportedExpirationType

Action URI http://schemas.xmlsoap.org/ws/2004/08/eventing/fault

 138

Code s:Sender

Reason The specified expiration type is not supported

Detail none

Comments A specific time for expiration is not supported (as opposed to duration).
This fault should not be used if the value itself is incorrect, only if the type
is not supported.

Applicability wse:Subscribe

Remedy Client corrects the expiration to use a duration.

11.6.36 wsen:UnsupportedExpirationType

Fault Subcode wsen:UnsupportedExpirationType

Action URI http://schemas.xmlsoap.org/ws/2004/09/enumeration/fault

Code s:Sender

Reason The specified expiration type is not supported

Detail none

Comments The specified expiration type is not supported. For example, a specific
time based expiration type may not be supported (as opposed to a
duration based expiration type).

This fault should not be used if the value itself is incorrect, only if the type
is not supported.

Applicability wsen:Enumerate

Remedy Client corrects the expiration time or omits it and retries.

11.6.37 wsman:UnsupportedFeature

Fault Subcode wsman:UnsupportedFeature

Action URI http://schemas.xmlsoap.org/ws/2005/06/management/fault

Code s:Sender

Reason The specified feature is not supported

 139

Detail <s:Detail>

 <wsman:FaultDetail>

 If possible, one of the following URI values

 </wsman:FaultDetail>

</s:Detail>

One of the following:

wsman:faultDetail/AuthorizationMode

wsman:faultDetail/AddressingMode

wsman:faultDetail/Ack

wsman:faultDetail/OperationTimeout

wsman:faultDetail/Locale

wsman:faultDetail/ExpirationTime

wsman:faultDetail/FragmentLevelAccess

wsman:faultDetail/DeliveryRetries
wsman:faultDetail/Heartbeats

wsman:faultDetail/Bookmarks

wsman:faultDetail/MaxElements

wsman:faultDetail/MaxTime

wsman:faultDetail/MaxEnvelopeSize

wsman:faultDetail/MaxEnvelopePolicy

wsman:faultDetail/FilteringRequired

wsman:faultDetail/InsecureAddress

wsman:faultDetail/FormatMismatch

wsman:faultDetail/FormatSecurityToken

wsman:faultDetail/AsynchronousRequest

wsman:faultDetail/MissingValues

wsman:faultDetail/InvalidValues

wsman:faultDetail/InvalidNamespace

wsman:faultDetail/Rename

wsman:faultDetail/OptionSet

Comments Used to indicate than an unsupported feature was attempted.

 140

Applicability any message

Remedy Client corrects or removes the unsupported feature request and retries.

12.0 XPath Support
Implementations will typically need to support XPath for several purposes, such as
Fragment Transfer (4.9), WS-Enumeration (5.0), and WS-Eventing filters (7.2.2). Since
the full XPath specification is large, subsets are typically required in resource-constrained
implementations.

The purpose of this section is to identify the minimum set of syntactic elements that
implentations should provide to promote maximum interoperability. In most cases,
implementations will provide large subsets of full XPath, but need additional definitions to
ensure that the subset meets minimum requirements. The Level 1 and Level 2 BNF
definitions below establish such minimums for use in the WS-Management space.

There are two subset profiles of XPath: Level 1 with basic node selector support and no
filtering (for supporting Fragment Transfer as described in 4.9), and Level 2 with basic
filtering support for WS-Enumeration and WS-Eventing. Level 2 is a formal superset of
Level 1.

The following BNFs are both formal LL(1) grammars and a parser can be constructed
automatically from the BNF using an appropriate tool, or a recursive-descent parser can be
implemented manually by inspection of the grammar.

Within the grammars, non-terminal tokens are surrounded by angled brackets, and terminal
tokens are in upper case and not surrounded by angled brackets.

XML namespace support is explicitly absent from these definitions. Processors which meet
the syntax requirements should provide a mode in which the elements are processed
without regard to XML namespaces, but may of course provide more powerful, namespace-
aware processing.

The default execution context of the XPath is specified explicitly for WS-Enumeration in
section 5.3 of this specification, and in WS-Eventing subscription filters in section 7.2.2.

For the following dialects, XML namespaces and QNames are not expected to be supported
by default and may be silently ignored by the implementation.

These are for informational purposes only and SHOULD NOT be identified as Filter Dialects
in actual SOAP messages. Since they are XPath compliant (albeit subsets), the Filter Dialect
in the SOAP messages is still that of full XPath:

 www.w3.org/TR/1999/REC-xpath-19991116

12.1 Level 1

Level 1 contains just the necessary XPath to identify nodes within an XML document or

 141

fragment and is targeted for use with Fragment Transfer (4.9) of this specification:

<path> ::= <root_selector> TOKEN_END_OF_INPUT;

<root_selector> ::= TOKEN_SLASH <element_sequence>;
<root_selector> ::= <attribute>;
<root_selector> ::= <relpath> <element_sequence>;

<relpath> ::= <>;

<element_sequence> ::= <element> <optional_filter_expression> <more>;

<more> ::= TOKEN_SLASH <follower>;
<more> ::= <>;

<follower> ::= <attribute>;
<follower> ::= <text_function>;
<follower> ::= <element_sequence>;

<optional_filter_expression> ::=
 TOKEN_OPEN_BRACKET <filter_expression> TOKEN_CLOSE_BRACKET;

<optional_filter_expression> ::= <>;

<attribute> ::= TOKEN_AT_SYMBOL <name>;

<element> ::= <name>;

<text_function> ::=
 TOKEN_TEXT TOKEN_OPEN_PAREN TOKEN_CLOSE_PAREN;

<name> ::= TOKEN_XML_NAME;

<filter_expression> ::= <array_location>;

<array_location> ::= TOKEN_UNSIGNED_INTEGER;

This allows selecting any XML node based on its name or array position, or any attribute by
its name. Optionally, the text() function can trail the entire expression to select only the
raw value of the name or attribute, excluding the XML attribute or element name wrapper.

Using the following XML fragment, some examples are shown:

(6) <a>
(7) <b x="y"> 100
(8) <c>
(9) <d> 200 </d>
(10) </c>

(11) <c>

(12) <d> 300 </d>

(13) <d> 400 </d>

(14) </c>

(15)

Examples:

(16) a // Selects <a> and all its content

(17) a/b // Selects <b x="y"> 100

(18) a/c // Selects both <c> nodes, one after the other

 142

(19) a/c[1] // Selects <c><d>200</d></c>

(20) a/c[2]/d[2] // Selects <d> 400 </d>

(21) a/c[2]/d[2]/text() // Selects 400

(22) a/b/text() // Selects 100

(23) a/b/@x // Selects x="y"

Note that the only filtering expression capability is an array selection. Also note that XPath
can return a node set. In section 4.9 of this specification, the intent is to select a specific
node, not a set of nodes, so if the situation occurs as illustrated on line (13) above, most
implementations would simply return a fault stating that it is unclear which <c> was meant
and require the client to actually select one of the two available <c> elements using the
array syntax. Also note that text() cannot be suffixed to attribute selection.

R12.1-1: A service which supports Fragment transfer as described in 4.9 of this
specification SHOULD at least support a subset of XPath as powerful as
that described in Level 1.

Clearly, the service may expose full XPath 1.0 or any other subset which meets or exceeds
the requirements defined here.

R12.1-2: A service which supports Level 1 XPath support MUST ensure that it
observes matching of a single node. If there is more than one element of
the same name at the same level in the XML, then the array notation MUST
be used to distinguish them.

12.2 Level 2
Level 2 contains everything defined in Level 1, plus general-purpose filtering functionality
with the standard set of relational operators and parenthesized subexpressions with AND,
OR, NOT, and so on. This dialect is suitable for filtering in WS-Enumeration and
subcription filters using WS-Eventing. This is a strict superset of Level 1, with the
<filter_expression> production being considerably extended to contain a useful subset of
the XPath filtering syntax:

<path> ::= <root_selector> TOKEN_END_OF_INPUT;

<root_selector> ::= TOKEN_SLASH <element_sequence>;

<root_selector> ::= <relpath> <element_sequence>;

<root_selector> ::= <attribute>;

<relpath> ::= <> ;

<element_sequence> ::= <element> <optional_filter_expression> <more>;

<more> ::= TOKEN_SLASH <follower>;

<more> ::= <>;

<follower> ::= <attribute>;

 143

<follower> ::= <text_function>;

<follower> ::= <element_sequence>;

<optional_filter_expression> ::= TOKEN_OPEN_BRACKET <filter_expression> TOKEN_CLOSE_BRACKET;

<optional_filter_expression> ::= <>;

<attribute> ::= TOKEN_AT_SYMBOL <name>;

<element> ::= <name>;

<text_function> ::= TOKEN_TEXT TOKEN_OPEN_PAREN TOKEN_CLOSE_PAREN;

<name> ::= TOKEN_XML_NAME;

<filter_expression> ::= <array_location>;

<array_location> ::= TOKEN_UNSIGNED_INTEGER;

<filter_expression> ::= <or_expression>;

<array_location> ::= UNSIGNED_INTEGER;

 // Next level, simple OR expression

<or_expression> ::= <and_expression> <or_expression_rest>;

<or_expression_rest> ::= TOKEN_OR <and_expression> <or_expression_rest>;

<or_expression_rest> ::= <>;

 // Next highest level, AND expression

<and_expression> ::= <rel_expression> <and_expression_rest>;

<and_expression_rest> ::= TOKEN_AND <rel_expression> <and_expression_rest>;

<and_expression_rest> ::= <>;

 // Next level of precedence >, <, >=, <=, =, !=

<rel_expression> ::= <sub_expression> <rel_expression_rest>;

<rel_expression_rest> ::= <name> <rel_op> <const>;

<rel_expression_rest> ::= <>;

 // Identifier, literal, or identifier + param_list (function call)

<sub_expression> ::= TOKEN_OPEN_PAREN <filter_expression> TOKEN_CLOSE_PAREN;

<sub_expression> ::= TOKEN_NOT TOKEN_OPEN_PAREN <filter_expression> TOKEN_CLOSE_PAREN;

// Relational operators

 144

<rel_op> ::= TOKEN_GT; // >

<rel_op> ::= TOKEN_LT; // <

<rel_op> ::= TOKEN_GE; // >=

<rel_op> ::= TOKEN_LE; // <=

<rel_op> ::= TOKEN_EQ; // =

<rel_op> ::= TOKEN_NE; // !=

<const> ::= QUOTE TOKEN_STRING QUOTE;

This allows the same type of selection syntax as Level 1, but adds filtering, as in the
following generic examples:

(1) a/b[@x="y"] // Select if it has attribute x="y"

(2) a/b[.="100"] // Select if it is 100

(3) a/c[d="200"] // Select <c> if <d> is 200

(4) a/c/d[.="200"] // Select <d> if it is 200

(5)

(6) a/b[.="100" and @x="z"] // Select if it is 100 and has @x="z"

(7) a/c[d="200" or d="300"] // Select all <c> with d=200 or d=300

(8)

(9) a/c[2][not(.="400" or @x="100")]

(10) // Select second <c> provided that

(11) // it is not 400 and does not have @x="100"

(12)

(13) a/c/d[.="100" or (@x="400" and .="500")]

(14) // Select d if it has a

(15) // value of 100 or it has an attribute x set to 400 and is 500

In essence, this dialect allows selecting any node based on a filter expression with the
complete set of relational operators, logical operators, and parenthesized subexpressions.

R12.2-1: A service which supports XPath-based filtering dialects as described in this
specification SHOULD at least support a subset of XPath as powerful as
that described in Level 2.

Clearly, the service may expose full XPath 1.0 or any other subset which meets or exceeds
the requirements defined here.

In the actual operation, such as wsen:Enumerate or wse:Subscribe, the XPath is identified
under the normal URI for full XPath:

 www.w3.org/TR/1999/REC-xpath-19991116

 145

13.0 WS-Management XSD
A normative copy of the XML Schema [XML Schema Part 1, Part 2] for this specification may
be retrieved by resolving the XML namespace URI for this specification (listed in Section 1.5
XML Namespaces).

A non-normative copy of the XML schema is listed below for convenience.

<?xml version="1.0" ?>

<!--

Copyright Notice

(c) 2004, 2005 Advanced Micro Devices, Inc., BMC Software, Inc, Dell, Inc.,

 Intel Corporation, Microsoft Corporation, Sun Microsystems, Inc., and WBEM Solutions, Inc.
All rights reserved.

Permission to copy and display WS-Management, which includes its associated WSDL and Schema files
and any other associated metadata

(the "Specification"), in any medium without fee or royalty is hereby granted, provided that you
include the following on

ALL copies of the Specification that you make:

1. A link or URL to the Specification at one of the Co-Developers' websites.

2. The copyright notice as shown in the Specification.

Microsoft, Intel, AMD, Dell, BMC, WBEM Solutions and Sun (collectively, the "Co-Developers") each
agree upon request to grant

you a license, provided you agree to be bound by such license, under royalty-free and otherwise
reasonable,

non-discriminatory terms and conditions to their respective patent claims that would necessarily
be infringed

by an implementation of the Specification and solely to the extent necessary to comply with the
Specification.

THE SPECIFICATION IS PROVIDED "AS IS," AND THE CO-DEVELOPERS MAKE NO REPRESENTATIONS OR
WARRANTIES, EXPRESS OR

IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE,

NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY PURPOSE;
NOR THAT THE

IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS
OR OTHER RIGHTS.

THE CO-DEVELOPERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES

ARISING OUT OF OR RELATING TO ANY USE OR DISTRIBUTION OF THE SPECIFICATIONS.

The name and trademarks of the Co-Developers may NOT be used in any manner, including advertising
or

publicity pertaining to the Specifications or their contents without specific, written prior
permission.

Title to copyright in the Specifications will at all times remain with the Co-Developers.

No other rights are granted by implication, estoppel or otherwise.

-->

<xs:schema

 146

 targetNamespace="http://schemas.xmlsoap.org/ws/2005/06/management"

 xmlns:tns="http://schemas.xmlsoap.org/ws/2005/06/management"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"

 xmlns:s="http://www.w3.org/2003/05/soap-envelope"

 xmlns:wxf="http://schemas.xmlsoap.org/ws/2004/09/transfer"

 elementFormDefault="qualified"

 >

 <xs:import namespace="http://schemas.xmlsoap.org/ws/2004/09/transfer"
schemaLocation="transfer.xsd"/>

 <!-- Addressing -->

 <xs:complexType name="ResourceURIType">

 <xs:simpleContent>

 <xs:extension base="xs:anyURI">

 <xs:anyAttribute namespace="##other" processContents="lax" />

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 <xs:element name="ResourceURI" type="tns:ResourceURIType"/>

 <xs:complexType name="FragmentTransferType">

 <xs:simpleContent>

 <xs:extension base="xs:string">

 <xs:attribute name="Dialect" type="xs:anyURI" use="optional"/>

 <xs:anyAttribute namespace="##other" processContents="lax" />

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 <xs:element name="FragmentTransfer" type="tns:FragmentTransferType"/>

 <!-- Control headers -->

 <xs:simpleType name="EnvelopePolicyType">

 <xs:restriction base="xs:anyURI">

 <xs:enumeration value="CancelSubscription"/>

 <xs:enumeration value="Skip"/>

 <xs:enumeration value="Notify"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:complexType name="MaxEnvelopeSizeType">

 <xs:simpleContent>

 <xs:extension base="xs:long">

 <xs:attribute name="Policy" type="tns:EnvelopePolicyType" use="optional"/>

 <xs:anyAttribute namespace="##other" processContents="lax" />

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 147

 <xs:element name="MaxEnvelopeSize" type="tns:MaxEnvelopeSizeType"/>

 <xs:element name="OperationTimeout" type="xs:duration"/>

 <xs:complexType name="LocaleType">

 <xs:simpleContent>

 <xs:extension base="xs:string">

 <xs:anyAttribute namespace="##other" processContents="lax" />

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 <xs:element name="Locale" type="tns:LocaleType"/>

 <xs:complexType name="SelectorType">

 <xs:complexContent mixed="true">

 <xs:restriction base="xs:anyType">

 <xs:sequence>

 <xs:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"
/>

 </xs:sequence>

 <xs:attribute name="Name" type="xs:token" use="required"/>

 <xs:anyAttribute namespace="##other" processContents="lax" />

 </xs:restriction>

 </xs:complexContent>

 </xs:complexType>

 <xs:complexType name="OptionType">

 <xs:simpleContent>

 <xs:extension base="xs:string">

 <xs:attribute name="Name" type="xs:token" use="required"/>

 <xs:attribute name="MustComply" type="xs:boolean" use="optional"/>

 <xs:attribute name="Type" type="xs:QName" use="optional"/>

 <xs:anyAttribute namespace="##other" processContents="lax" />

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 <xs:complexType name="SelectorSetType">

 <xs:sequence>

 <xs:element name="Selector" type="tns:SelectorType" minOccurs="0"
maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:anyAttribute namespace="##other" processContents="lax" />

 </xs:complexType>

 <xs:complexType name="OptionSetType">

 <xs:sequence>

 <xs:element name="Option" type="tns:OptionType" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:anyAttribute namespace="##other" processContents="lax" />

 </xs:complexType>

 148

 <xs:complexType name="XmlFragmentType">

 <xs:complexContent mixed="true">

 <xs:restriction base="xs:anyType">

 <xs:sequence>

 <xs:any namespace="##other" processContents="skip" minOccurs="0" maxOccurs="unbounded"
/>

 </xs:sequence>

 <xs:anyAttribute namespace="##other" processContents="skip" />

 </xs:restriction>

 </xs:complexContent>

 </xs:complexType>

 <xs:element name="XmlFragment" type="tns:XmlFragmentType" nillable="true"/>

 <xs:element name="SelectorSet" type="tns:SelectorSetType"/>

 <xs:element name="OptionSet" type="tns:OptionSetType"/>

 <!-- Rename -->

 <xs:complexType name="RenameType">

 <xs:sequence maxOccurs="unbounded">

 <xs:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded" />

 </xs:sequence>

 <xs:anyAttribute namespace="##other" processContents="lax" />

 </xs:complexType>

 <xs:element name="Rename" type="tns:RenameType"/>

 <xs:element name="RenamedTo" type="tns:RenameType"/>

 <!-- Chapter 5 - Enumeration -->

 <xs:simpleType name="EnumerationModeType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="EnumerateEPR"/>

 <xs:enumeration value="EnumerateObjectAndEPR"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:element name="EnumerationMode" type="tns:EnumerationModeType"/>

 <xs:complexType name="ItemType">

 <xs:complexContent mixed="true">

 <xs:restriction base="xs:anyType">

 <xs:sequence>

 <xs:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"
/>

 </xs:sequence>

 <xs:anyAttribute namespace="##other" processContents="lax" />

 </xs:restriction>

 </xs:complexContent>

 </xs:complexType>

 149

 <xs:element name="Item" type="tns:ItemType"/>

 <!-- Chapter 7 - Eventing -->

 <xs:complexType name="ConnectionRetryType">

 <xs:simpleContent>

 <xs:extension base="xs:duration">

 <xs:attribute name="Total" type="xs:int" use="optional"/>

 <xs:anyAttribute namespace="##other" processContents="lax" />

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 <xs:element name="ConnectionRetry" type="tns:ConnectionRetryType"/>

 <xs:element name="Heartbeats" type="xs:duration"/>

 <xs:element name="SendBookmarks"/>

 <xs:complexType name="BookmarkType">

 <xs:complexContent mixed="true">

 <xs:restriction base="xs:anyType">

 <xs:sequence>

 <xs:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"
/>

 </xs:sequence>

 <xs:anyAttribute namespace="##other" processContents="lax" />

 </xs:restriction>

 </xs:complexContent>

 </xs:complexType>

 <xs:element name="Bookmark" type="tns:BookmarkType"/>

 <!-- Batched mode -->

 <xs:element name="MaxElements" type="xs:long"/>

 <xs:element name="MaxTime" type="xs:duration"/>

 <xs:element name="AckRequested"/>

 <xs:complexType name="DroppedEventsType">

 <xs:simpleContent>

 <xs:extension base="xs:int">

 <xs:attribute name="Action" type="xs:anyURI" use="optional"/>

 <xs:anyAttribute namespace="##other" processContents="lax" />

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 <xs:element name="DroppedEvents" type="tns:DroppedEventsType"/>

 <xs:complexType name="EventType">

 <xs:complexContent>

 <xs:restriction base="xs:anyType">

 150

 <xs:sequence>

 <xs:any namespace="##other" processContents="skip" minOccurs="0" maxOccurs="unbounded"
/>

 </xs:sequence>

 <xs:attribute name="Action" type="xs:anyURI" use="required"/>

 <xs:anyAttribute namespace="##other" processContents="lax" />

 </xs:restriction>

 </xs:complexContent>

 </xs:complexType>

 <xs:complexType name="EventBlockType">

 <xs:sequence>

 <xs:element name="Event" type="tns:EventType" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:anyAttribute namespace="##other" processContents="lax" />

 </xs:complexType>

 <xs:element name="Events" type="tns:EventBlockType"/>

 <!-- Authentication mode -->

 <xs:complexType name="AuthType">

 <xs:attribute name="Profile" type="xs:anyURI" use="optional"/>

 <xs:anyAttribute namespace="##other" processContents="lax" />

 </xs:complexType>

 <xs:element name="Auth" type="tns:AuthType"/>

 <!-- Fault helpers -->

 <xs:element name="URL" type="xs:anyURI"/>

 <xs:simpleType name="FaultCodeType">

 <xs:restriction base="xs:anyURI">

 <xs:enumeration value="wsman:AccessDenied"/>

 <xs:enumeration value="wsman:AmbiguousSelectors"/>

 <xs:enumeration value="wsman:AlreadyExists"/>

 <xs:enumeration value="wsman:Concurrency"/>

 <xs:enumeration value="wsman:EncodingLimit"/>

 <xs:enumeration value="wsman:DeliveryRefused"/>

 <xs:enumeration value="wsman:InternalError"/>

 <xs:enumeration value="wsman:InvalidHeader"/>

 <xs:enumeration value="wsman:InvalidBookmark"/>

 <xs:enumeration value="wsman:QuotaLimit"/>

 <xs:enumeration value="wsman:InvalidOptions"/>

 <xs:enumeration value="wsman:InvalidParameter"/>

 <xs:enumeration value="wsman:InvalidSelectors"/>

 <xs:enumeration value="wsman:InvalidTimeout"/>

 <xs:enumeration value="wsman:MinimumEnvelopeLimit"/>

 <xs:enumeration value="wsman:RenameFailure"/>

 <xs:enumeration value="wsman:ResourceOffline"/>

 <xs:enumeration value="wsman:SchemaValidationError"/>

 <xs:enumeration value="wsman:SystemOffline"/>

 <xs:enumeration value="wsman:TimedOut"/>

 151

 <xs:enumeration value="wsman:UnsupportedFeature"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="FaultDetailType">

 <xs:restriction base="xs:anyURI">

 <xs:enumeration value="wsman:faultDetail/Ack"/>

 <xs:enumeration value="wsman:faultDetail/ActionMismatch"/>

 <xs:enumeration value="wsman:faultDetail/AddressingMode"/>

 <xs:enumeration value="wsman:faultDetail/AlreadyExists"/>

 <xs:enumeration value="wsman:faultDetail/AmbiguousSelectors"/>

 <xs:enumeration value="wsman:faultDetail/AsynchronousRequest"/>

 <xs:enumeration value="wsman:faultDetail/AuthorizationMode"/>

 <xs:enumeration value="wsman:faultDetail/Bookmarks"/>

 <xs:enumeration value="wsman:faultDetail/CharacterSet"/>

 <xs:enumeration value="wsman:faultDetail/DeliveryRetries"/>

 <xs:enumeration value="wsman:faultDetail/DuplicateSelectors"/>

 <xs:enumeration value="wsman:faultDetail/EncodingType"/>

 <xs:enumeration value="wsman:faultDetail/EnumerationMode"/>

 <xs:enumeration value="wsman:faultDetail/ExpirationTime"/>

 <xs:enumeration value="wsman:faultDetail/Expired"/>

 <xs:enumeration value="wsman:faultDetail/FilteringRequired"/>

 <xs:enumeration value="wsman:faultDetail/FormatMismatch"/>

 <xs:enumeration value="wsman:faultDetail/FormatSecurityToken"/>

 <xs:enumeration value="wsman:faultDetail/FragmentLevelAccess"/>

 <xs:enumeration value="wsman:faultDetail/Heartbeats"/>

 <xs:enumeration value="wsman:faultDetail/InsecureAddress"/>

 <xs:enumeration value="wsman:faultDetail/InsufficientSelectors"/>

 <xs:enumeration value="wsman:faultDetail/Invalid"/>

 <xs:enumeration value="wsman:faultDetail/InvalidAddress"/>

 <xs:enumeration value="wsman:faultDetail/InvalidFormat"/>

 <xs:enumeration value="wsman:faultDetail/InvalidFragment"/>

 <xs:enumeration value="wsman:faultDetail/InvalidName"/>

 <xs:enumeration value="wsman:faultDetail/InvalidNamespace"/>

 <xs:enumeration value="wsman:faultDetail/InvalidResourceURI"/>

 <xs:enumeration value="wsman:faultDetail/InvalidSelectorAssignment"/>

 <xs:enumeration value="wsman:faultDetail/InvalidSystem" />

 <xs:enumeration value="wsman:faultDetail/InvalidTimeout" />

 <xs:enumeration value="wsman:faultDetail/InvalidValue" />

 <xs:enumeration value="wsman:faultDetail/InvalidValues"/>

 <xs:enumeration value="wsman:faultDetail/Locale"/>

 <xs:enumeration value="wsman:faultDetail/MaxElements" />

 <xs:enumeration value="wsman:faultDetail/MaxEnvelopePolicy"/>

 <xs:enumeration value="wsman:faultDetail/MaxEnvelopeSize"/>

 <xs:enumeration value="wsman:faultDetail/MaxEnvelopeSizeExceeded"/>

 <xs:enumeration value="wsman:faultDetail/MaxTime"/>

 <xs:enumeration value="wsman:faultDetail/MinimumEnvelopeLimit"/>

 <xs:enumeration value="wsman:faultDetail/MissingValues" />

 <xs:enumeration value="wsman:faultDetail/NotSupported"/>

 <xs:enumeration value="wsman:faultDetail/OperationTimeout"/>

 <xs:enumeration value="wsman:faultDetail/OptionLimit"/>

 <xs:enumeration value="wsman:faultDetail/OptionSet"/>

 152

 <xs:enumeration value="wsman:faultDetail/ReadOnly"/>

 <xs:enumeration value="wsman:faultDetail/ResourceOffline"/>

 <xs:enumeration value="wsman:faultDetail/Rename"/>

 <xs:enumeration value="wsman:faultDetail/SelectorLimit"/>

 <xs:enumeration value="wsman:faultDetail/ServiceEnvelopeLimit"/>

 <xs:enumeration value="wsman:faultDetail/TargetAlreadyExists"/>

 <xs:enumeration value="wsman:faultDetail/TypeMismatch"/>

 <xs:enumeration value="wsman:faultDetail/UnexpectedSelectors"/>

 <xs:enumeration value="wsman:faultDetail/UnreportableSuccess"/>

 <xs:enumeration value="wsman:faultDetail/URILimitExceeded"/>

 <xs:enumeration value="wsman:faultDetail/Whitespace"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="FaultDetailOpenType" >

 <xs:union memberTypes="tns:FaultDetailType xs:anyURI" />

 </xs:simpleType>

 <xs:element name="FaultDetail" type="tns:FaultDetailOpenType"/>

 <xs:simpleType name="WSManURIListType">

 <xs:restriction base="xs:anyURI">

 <xs:enumeration value="http://schemas.xmlsoap.org/ws/2005/06/management/Rename"/>

 <xs:enumeration value="http://schemas.xmlsoap.org/ws/2005/06/management/RenameResponse"/>

 <xs:enumeration value="http://schemas.xmlsoap.org/ws/2005/06/management/fault"/>

 <xs:enumeration value="http://schemas.xmlsoap.org/ws/2005/06/management/Heartbeat"/>

 <xs:enumeration value="http://schemas.xmlsoap.org/ws/2005/06/management/bookmark/earliest"/>

 <xs:enumeration value="http://schemas.xmlsoap.org/ws/2005/06/management/PushWithAck"/>

 <xs:enumeration value="http://schemas.xmlsoap.org/ws/2005/06/management/Events"/>

 <xs:enumeration value="http://schemas.xmlsoap.org/ws/2005/06/management/Event"/>

 <xs:enumeration value="http://schemas.xmlsoap.org/ws/2005/06/management/Pull"/>

 <xs:enumeration value="http://schemas.xmlsoap.org/ws/2005/06/management/Ack"/>

 <xs:enumeration value="wsman:secprofile/http/basic"/>

 <xs:enumeration value="wsman:secprofile/http/digest"/>

 <xs:enumeration value="wsman:secprofile/https/basic"/>

 <xs:enumeration value="wsman:secprofile/https/digest"/>

 <xs:enumeration value="wsman:secprofile/https/mutual"/>

 <xs:enumeration value="wsman:secprofile/http/spnego-kerberos"/>

 <xs:enumeration value="wsman:secprofile/https/spnego-kerberos"/>

 <xs:enumeration value="wsman:secprofile/https/mutual/basic"/>

 <xs:enumeration value="wsman:secprofile/https/mutual/digest"/>

 <xs:enumeration value="wsman:secprofile/https/mutual/spnego-kerberos"/>

 <xs:enumeration value="wsman:filterDialect/xpath1/Level1"/>

 <xs:enumeration value="wsman:filterDialect/xpath1/Level2"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="WSManURIListOpenType" >

 <xs:union memberTypes="tns:WSManURIListType xs:anyURI" />

 </xs:simpleType>

</xs:schema>

 153

14.0 Acknowledgements
This specification has been developed as a result of joint work with many individuals and
teams, including:

Paul C. Allen, Microsoft
Don Box, Microsoft
Jerry Duke, Intel
David Filani, Intel
Kirill Gavrylyuk, Microsoft
Omri Gazitt, Microsoft
Frank Gorishek, AMD
Lawson Guthrie, Intel
Arvind Kumar, Intel
Vishwa Kumbalimutt, Microsoft
Brad Lovering, Microsoft
Pat Maynard, Intel
Steve Millet, Microsoft
Brian Reistad, Microsoft
Matthew Senft, Microsoft
Tom Slaight, Intel
Marvin Theimer, Microsoft
Dave Tobias, AMD
John Tollefsrud, Sun
Anders Vinberg, Microsoft
Jerry Xie, Intel

This specification has been validated by an Interoperability Workshop. The details of this
workshop can be found here:

http://msdn.microsoft.com/webservices/community/workshops/mgmtinterop052005.aspx

The authors would like to thank the participants for their efforts

15.0 References

[1] HTTP 1.1
R. Fielding et al, "IETF RFC 2616: Hypertext Transfer Protocol -- HTTP/1.1," June 1999

[2] HTTPS
 E. Rescorla, "RFC 2818: HTTP over TLS," May 2000

[3] RFC 2119
S. Bradner, "RFC 2119: Key words for use in RFCs to Indicate Requirement Levels,"
March 1997

[4] SOAP 1.2
M. Gudgin, et al, "SOAP Version 1.2 Part 1: Messaging Framework," June 2003.

 154

[5] WS-I Basic Profile 1.1
http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html

[6] WS-Addressing
D. Box et al, "Web Services Addressing (WS-Addressing),"August 2004

[7] WS-Transfer
J. Alexander et al, "Web Services Transfer (WS-Transfer)," September 2004

[8] WS-Enumeration
J. Alexander et al, "Web Services Enumeration (WS-Enumeration),"September 2004

[9] WS-Eventing
D. Box et al, "Web Services Eventing (WS-Eventing),"August 2004

[10] WS-MetadataExchange
K. Ballinger et al, "Web Services Metadata Exchange (WS-MetadataExchange),"
September 2004

[11] WS-SecureConversation
G. Della-Libera et al, "Web Services Secure Conversation Language (WS-
SecureConversation)," May, 2004

[12] WSDL 1.1
E. Christensen et al, "Web Services Description Language (WSDL) 1.1," March 2001.

[13] XML Schema, Part 1
H. Thompson et al, "XML Schema Part 1: Structures," May 2001.

[14] XML Schema, Part 2
P. Biron et al, "XML Schema Part 2: Datatypes," May 2001.

[15] RFC 3986 : Uniform Resource Identifiers (URI) : Generic Syntax

 http://www.ietf.org/rfc/rfc3986.txt

[16] MTOM : SOAP Message Transmission Optimization Mechanism

http://www.w3.org/TR/2004/PR-soap12-mtom-20041116/

[17] RFC 3066 : Tags for the Identification of Languages

 http://www.ietf.org/rfc/rfc3066.txt

[18] Web Services Security (WS-Security 2004)]

 http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-
1.0.pdf

[19] Web Services Trust Language February 2005

 http://msdn.microsoft.com/ws/2005/02/ws-trust/

[20] Web Services Security Username Token Profile 1.0

 http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-
1.0.pdf

[21] Web Services Security X.509 Certificate Profile

 http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf

[22] Kerberos based HTTP Authentication in Windows, Internet-Draft, June 2005

 155

 http://www.ietf.org/internet-drafts/draft-jaganathan-kerberos-http-00.txt

[23] RFC 4122: A Universally Unique IDentifier (UUID) URN Namespace

 http://www.ietf.org/rfc/rfc4122.txt

